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ABSTRACT

ABSTRACT:

With the development of modern technology, the intelligence of robots is also
increasing, and the use of robots to replace human beings to complete boring Visual
information as one of the important perceptual information can bring more possibilities
for the work of robots, and robots equipped with vision system can realize the efficiency
of production. Visual information as one of the important perceptual information can
bring more possibilities for the work of robots, and robots equipped with vision system
can realize the functions of warehouse goods handling, assembly line item sorting, parts
assembly, etc.

In this paper, based on machine vision technology and intelligent control of robots,
we build a hand-eye system for a two-armed dual-arm robot and verify the effectiveness
of the system by setting experimental tasks for positioning and grasping.

Firstly, the mechanical structure of the robot and its kinematic positive and negative
solutions are studied, the mathematical model of robot dynamics is derived, and the
hardware system of the dual-arm robot is improved by adding grippers and designing
connectors for assembling the grippers and the body The hardware system of the dual-
arm robot is improved by adding grippers and designing connectors for assembling the
grippers and the body.

Next, the vision recognition and localization system of the robot is investigated. The
selection of the camera is introduced, the principle of the internal parameter calibration
of the camera is analyzed and the distortion of the image is reduced by the camera
calibration procedure, the SSD neural network is trained and used for object recognition
and classification using open-source datasets, and the object is localized by extracting the
pixel coordinate values and depth values of the pixel points, and finally the visual
information of the whole vision system is integrated into the ROS The visual information
of the whole vision system is integrated into the ROS environment in the format of ROS
messages for subsequent use.

Then, the intelligent control system of the robot is studied, the parameter file of the
robot is established, the object type information and 3D coordinate points are obtained

by subscribing to the topic of visual information, the motion space and collision objects
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in the real environment are The output information of the path planning is sent to the
robot through the network communication The output information of the path planning
is sent to the robot through the network communication protocol so that the motion
trajectory of the robot in the simulation and the real environment is consistent.

Finally, the hand-eye system of the robot is tested by setting the task scenario of
pouring water with two arms using the RGB-D camera and the two-arm robot as the
hardware base platform, analyzing the advantages and disadvantages of the hand-eye
system, and proposing effective solutions for the The system is based on a two-arm robot
with the RGB-D camera and the two-arm robot as the hardware base platform, analyzing
the advantages and disadvantages of the hand-eye system, and proposing effective
solutions for the shortcomings of the system.

In total, 55 pairs of figures, 6 tables and 51 references are presented in this paper.

KEYWORDS: machine vision; object classification; positioning and grasping; dual-arm

robot; ROS intelligent control
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1 Introduction

1.1 Background and significance of the study

With the development of modern technology, the concept of intelligence has
permeated all walks of life. The use of industrial robots equipped with intelligent systems
to replace manpower for repetitive and highly accurate tasks saves labor expenses and
improves the quality and efficiency of product manufacturing. The degree of intelligence
of industrial robots has increased with the continuous improvement of computer science
and technology, and their functional loads have become more and more abundant.
Currently intelligent robots have been widely used in automotive, pharmaceutical,
chemical, food, metal manufacturing and other fields!'! . China's State Council has issued
important instructions on the future direction of manufacturing, including a focus on
smart manufacturing, and has proposed the concept of "Smart Manufacturing 2025".

Machine vision is an extremely important part of the functional modules of
industrial robots. The steps of machine vision implementation include image acquisition,
image pre-processing and analysis of the images. Image acquisition is done by a camera
with image acquisition capabilities, and different types of images are captured depending
on the type of sensor the camera has. The computer receives the image and preprocesses
the original image, analyzes the processed image information, classifies the object using
visual recognition algorithms, and extracts depth image information to obtain 3D analysis
results and object type information.[? This information can be used in industry for parcels.
In industry, this information can be used for parcel sorting, quality inspection,
dimensional measurement, etc. These functions can effectively solve the problem of high
intensity and low efficiency of manual inspection.

Deep learning is an emerging field of artificial intelligence nowadays, and its
construction principle is similar to the process of human learning knowledge. How to
combine deep learning with machine vision and robotics to optimize target localization,
object grasping and other functions is currently a hot research topic in the field of
robotics®! . With such a combination, an industrial robot can perform the specified tasks

with faster speed and higher accuracy, and it can also perform more complex tasks. This



Beijing Jiaotong University Graduation Design (Thesis) Full
Text

shows that the value that industrial robots can create in the future smart manufacturing
industry will be further enhanced with the development of the field of artificial
intelligence.

Overall, the research on collaborative control of two arms based on image
recognition is of great significance to industrial production. Optimizing the system will
not only reduce labor expenses and improve efficiency to promote economic
development, but also create social value through the impact of the research, highlighting

the country's technological level.

1.2 Current status of domestic and international research

1.2.1 Current status of research on two-armed robots

Foreign research on dual-arm robots began early, with researchers in the United
States and Japan leading the advancement of the industry with advanced industrial
manufacturing and substantial funding support. The next section will introduce the more
representative dual-arm robots and vision research based on dual-arm robots at home and
abroad.

Developed by ABB, YuM:i is the industry's first 14-axis robot to enable human-robot
collaboration. Equipped with a flexible gripper, feeding system, precise vision

positioning recognition system, Yumi's single arm has a payload of 0.5kg and a horizontal

vertical range of motion of 559mm (41

Figure 1-1 Yumi dual-arm robot Figure 1-2 Kitech dual-arm robot

by Korea Institute of Technologyl®! Kitech's two-armed robot is equipped with two
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human-like palms and a vision sensing system, allowing it to work with both arms in a
variety of complex scenarios, such as putting together blocks with both hands and
carrying goods to designated locations.

The Motoman-SDA series two-arm robot developed by Yaskawa Japan is similar in
size to a human being. It is a 15-axis two-arm robot consisting of a body with one axis of
rotation and a single arm with seven axes, each arm having a payload of 20 kg, and its

horizontal and vertical range of motion of the arm is 2590 mm and 1820 mm, respectively.

Figure 1-3 Motoman-SDA

The Baxter two-arm robot from Rethink Robotics has a single arm with seven
degrees of freedom and, unlike traditional industrial two-arm robots, its joint assembly is
composed of a series of elastic brakes with a spring between the engine, drive and
actuator that monitors external forces and provides feedback. Baxter's arms are flexible
and force-sensitive, with a CMOS camera at the end of each arm and the optical axis of
the camera oriented parallel to the end joint axis.[®) Baxter's arms are flexible and have
good force sensing capabilities. Because of the safety of the Baxter robot and its well-
developed sensor system, many researchers have conducted functional extension studies

based on this robot.

Figure 1-4 Baxter dual-arm robot
The use of two-armed robots is not limited to industry either, as the Rollin Justin
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two-armed robot developed by the German Aerospace Centerl”l With 51 degrees of
freedom throughout its body, it can be used for space operations. Houston
Electromechanical Corporation has developed Aquanaut, a two-armed robot for ocean
exploration.[®] The robot can be used for remote repair of deep-sea equipment after a deep
dive to the mission site. Canadian team researches Dextre two-armed robot!®! can assist
astronauts in space walks and can replace astronauts in some dangerous extravehicular
operations.

The DSCRS5 dual-arm robot developed by Xinsong has a built-in control cabinet
with a rich expansion interface, a single arm with a rated load of 5 kg, a single arm
working radius of 800 mm, and basic functions such as traction teaching.l'’! It is also a

physical robot used in this research project.

"'3 by
7,}\" |
(@

R

Figure 1-5 Xinsong dual-arm robot

The police robot developed by Beijing Institute of Aerospace MEMS Technology,
the robot integrates a variety of sensor devices, equipped with advanced dual-arm
collaboration technology, which can achieve low-latency bionic operation under non-
visual conditions, the dual-arm robot can use two arms to collaborate operation, with real-
time voice calls, high-definition video playback and the collection of environmental
information through sensors at the scene, the operator can control in a safe position The
robot can be operated from a safe position to complete rescue work!!!l The operator can
control the robot from a safe location to complete the rescue work.

From the point of view of the robot hardware system, the form of domestic and
foreign two-armed robots is very similar, they have 14 degrees of freedom in both arms,
according to the different task scenarios will add degrees of freedom in the legs and waist.
Most of the robots integrate a large number of force, torque, vision and other sensors.
Through comparative analysis, it can be seen that domestic and foreign dual-arm robots

are very similar in industrial task scenarios, but in scenarios such as space operations and
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marine operations, China's research in this area is still relatively small.

1.2.2 Current status of machine vision research

French computer scientist Likun Yang's proposed convolutional neural network is
seen as a major leap forward in the field of vision!!?] He claims that the research was
inspired by Kunihiko Fukushima's proposal of a neurocognitive machinel!3] . Another big
leap in visual recognition was the emergence of ImageNet, in which Professor Feifei Li
of Princeton University in the field of computer vision built an open-source database of
images based on nouns in the word network, so that each noun contains a large number
of images of the thing it represents, based on the problem that the field of visual
recognition requires a large number of, multi-category images.!'4 .

Pinto at the Robotics Institute of Carnegie Mellon University proposed a CNN-
based self-supervised learning algorithm for 3D depth sensor analytical inference
grasping with the disadvantages of fitting a difficult model and ignoring the density and
mass of the object itself, this model can learn and predict to grasp unknown objects
through repeated experiments, after self-built training datasets and using pre-trained
networks, finally achieving The two-armed robot achieved a 73% grasping success rate
under different conditions!'3! Pinto hopes to apply this network to extend object 3D
information for non-planar grasping in the future.

Shingo Kitagawa in the JSK lab at the University of Tokyo conducted a visual
grasping study using a Baxter robot. Shingo proposed a multi-stage learning method
based on CNN for dual-arm grasping of goods for warehouse picking, and the Baxter
robot integrated with the software system of the method performed automatic labeling
and grasping trials in the real world in a very short period of time A high grasping success
rate was achieved. Finally, after tuning the network to obtain a high success rate of 76.7%
in 90 trials!'®! Shingo suggested that in the future, he would like to equip more dexterous
robotic hands to the two-armed robot to achieve more robotic manipulation tasks.

Jeffrey Mahler of Berkeley, California, conducted research on visual grasping
experiments based on ABB's YuMi robot. Jeffrey developed a graspable quality
convolutional neural network (GQ-CNN) architecture that predicts the robustness of
point clouds and trained it on Dex-Net 2.0. After more than 1,000 physical experiments

to evaluate the training, the grasping system demonstrated 99% accuracy in 40 location-
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based object grasping experiments, and the method was three times faster than point
cloud-based methods.['”] Jeffery says that in future work he hopes to achieve 100%
success on known objects by using active learning to adaptively acquire grasping points
using a GQ-CNN initialization strategy, and he also plans to extend the method to use
point clouds from multiple perspectives to accomplish grasping tasks with sequential
structure.

Ashvin Nair of Berkeley, California, combines the DDPG algorithm through several
algorithms!'®! and demonstrations together, using demonstrations to simplify the learning
process of the robot. This method can be applied to the robot's learning of any continuous
task. After simulation experiments, Nair's robot trained by this method can stack three
squares without re-presentation, and if the parameters are adjusted and demonstrated, the
robot can stack up to six squares. nair says the main limitation of the method is the sample
efficiency when solving difficult tasks.

Guo Di from Tsinghua University proposed and implemented a robot grasping
planning method based on a three-dimensional model of the target object, and applied a
deep learning method to the grasping task of the robot, using a grasping rectangular box
to represent the grasping position of the robot's dexterous hand, and proposed an end-to-
end grasping detection convolutional neural network [,

Ni Hepeng et al. from Shandong University proposed an image de-duplication
algorithm based on time and workpiece position, which was tested on a Delta robot to
solve the problem of repeated shots of workpieces by the vision system during the sorting
process. The authors obtained the fastest sorting speed of 110 times/min in the solid robot
experiment, and obtained a false capture rate of less than 2% missed capture rate of 0[?%]
The experimental results demonstrate the high stability and accuracy of the algorithm
used by the authors.

Chuan-Peng Li of North Central University proposed an improved SSD algorithm
(FP-SSD) for the problem that SSD is not effective in locating small objects. mAP of this
method reached 79.0%, which improved the accuracy by 1.7% compared with the SSD
method[?!l .

Regarding visual localization, Dong et al. used Kinect to acquire real-time images
of tomatoes in the farm, and after segmenting and de-noising the original images. Using
a point cloud library to reconstruct the tomato model in 3D and obtain its 3D coordinate
system, experiments show that this system has high accuracy in target localization, and

they use this image information combined with a robot with vacuum suction cups to
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perform automatic tomato picking operations in the farm [?2I They used this image
information combined with a robot with vacuum suction cups to automatically pick
tomatoes on farms.

In a similar study, Figueroa et al. used a depth camera to capture depth information
in color images and scenes. This vision system uses fused data from color cameras and
depth sensors to segment objects by distance, use scale-invariant features to describe and
identify objects, and and internal parameters of the camera combined with depth
information to locate objects relative to the camera's viewpoint. The system is
implemented with a robotic arm to locate objects for grasping(?3! .

Ma Songhui et al. designed an object detection and localization algorithm based on
Mask RCNN and stereo vision in order to improve the picking speed and accuracy of the
robot, and completed the autonomous detection and 3D spatial localization of the target
to be detected. For the problems that the detection accuracy of neural network may be
low and the object contour centroid estimation is inaccurate, ORB descriptors are used to
confirm the target contour matching centroid. The experimental results show that the
algorithm proposed by Ma Songhui can accurately complete object detection and
localization, which is important for the research of fully automated picking robots!?* .

Gené-Mola, Jordi et al. constructed a remote fruit detection system capable of
identifying and locating fruits in three dimensions. Most current fruit detection systems
are based on two-dimensional image analysis. They used Mask R-CNN instance
segmentation neural network for 2D fruit detection and segmentation, generated 3D point
clouds of detected apples using motion structure photogrammetry, projected 2D image
detection into 3D space, and used a trained support vector machine to remove false
positives. This method was tested on 11 Fuji apple trees, which contained a total of 1455
apples. The results showed that by combining instance segmentation with SFM, the
system performance improved from an F1 score of 0.816 (2D fruit detection) to 0.881

(3D fruit detection and localization) in[?*

1.3 Main work of this paper

The subject entities of this paper are the Astra Pro depth camera and the DSCRS
dual-arm robot developed by Sinsung. The key hardware included in this system are the

upper computer computing system, the camera with RGB-D sensor, the flexible gripper,
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and the dual-arm robot body. The overall schematic diagram of the system arrangement

is shown in Figure 1-6.

2

= RN

Figure 1-6 Dual-arm robot hand-eye system

Based on the above background, this project will investigate the collaborative
system of two-arm robot based on image recognition, and the research areas include the
analysis of the robot mechanical structure and its motion and dynamics model, the
calibration of the internal and external parameters of the camera, the target detection
based on deep learning, the extraction of 3D coordinate points, the collaborative
trajectory planning of the two arms and the intelligent control of the robot, and the
combination of these modules to complete the water pouring task to verify the The
effectiveness of each module is verified.

The specific work on the subject is as follows.

(1) Robot mechanical structure and mathematical model

Solve the D-H table of the robot's single arm, mathematically derive the robot's
forward and reverse kinematic solution, dynamics model, analyze the mechanical
mechanism of the robot's double arm and its gripper, design the connector independently,
and improve the robot hardware system.

(2) Visual perception and positioning

Analyze the theoretical principle of camera parameter calibration and use the code
to implement the internal parameter calibration of RGB-D camera, obtain the corrected
RGB image and depth image, use the trained neural network SSD (single shot detection)
to identify the grasped object and extract the 3D coordinate information of the identified
object. The 3D coordinate information of the object and its kind of information are sent
to the upper computer system for robot arm path planning.

(3) Two-arm collaboration and intelligent control
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Build the ROS-supported URDF robot model format according to the parameters of
the real robot, and use the Movelt plugin to export the SRDF model that can be used for
path planning.

Complete the hand-eye calibration to find the external parameters of the camera, use
the coordinate transformation package tf in ROS to transform the coordinate points of the
object under the camera coordinate system to the base coordinate system of the robot,
add the obstacles in the real space after abstraction in the control program, set the dual-
arm robot workspace, and use the robot end gripper to reach the gripping point near the
3D coordinates of the object as the task goal to complete the dual-arm robot The path
planning is completed and the planning information is output. The ROS output robot arm
path planning information is sent to the robot via TCP/IP in robot script language format
to realize the control of the physical robot's dual arms. Design experimental scenarios
including single-arm experiment, clamping experiment, and dual-arm collaboration
experiment to verify the correctness and effectiveness of the intelligent control system of

the dual-arm robot.

1.4 Content arrangement and structure of the whole text

Chapter 1 introduces the research background and significance of this paper,
including the dual-arm robot, the domestic and international research progress in the field
of machine vision, an introduction to the research object of this paper, the completed
work and the arrangement of the full text.

Chapter 2 analyzes the mechanical mechanism and kinematics of the robot, derives
and verifies the forward and inverse kinematic solutions of the robot, obtains the DH
parameters of the robot, derives and verifies the robot dynamics model, designs and prints
connectors using 3D modeling software, and refines the robot hardware system.

Chapter 3 investigates the visual perception and recognition localization of the
vision system. In this paper, RGB-D cameras are selected as the collectors of visual
information, and the internal parameter matrices of RGB and IR cameras are obtained
using the Zhang Zhengyou calibration method, respectively, and the SSD neural network
is trained with the COCO training set for object recognition and classification using the
TensorFlow deep learning framework. The coordinate points of the object in the pixel

coordinate system and the depth values are collected, and the 3D coordinate points of the
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object in the camera coordinate system are calculated using the tf tool and encapsulated
as a topic (Topic) of the ROS system for subsequent use. The causes of errors in visual
localization are tested and analyzed, and effective solutions are proposed.

Chapter 4 establishes the simulation model of the robot with the parameters of the
real robot, uses the object type and coordinate point information as the input of the
intelligent control system, introduces the principle of hand-eye calibration and uses code
to implement it to get the parameters outside the camera, uses the tf toolkit of ROS to
complete the transformation between multiple coordinate systems within this system, and
outputs the 3D coordinate points of the object under test in the base coordinate system of
the robot. Call the Movelt path planning function package in the ROS system, add
obstacles such as tables in the robot's real environment, and set the robot's workspace
size, and send the planning information to the physical robot to test the consistency of
the virtual and real robot movements. Replace the kinematic solver and add a PID
controller to optimize the robot's motion planning process.

In Chapter 5, three test scenarios, single-arm experiment, grasping experiment, and
two-arm collaborative implementation, are set to experimentally test the correctness and
effectiveness of the system and analyze the performance of the hand-eye system.

Chapter 6 concludes the whole text, summarizes the shortcomings of this topic,
proposes improvement options and next research directions, and analyzes the social and

economic aspects of this system.
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2 Robot mechanical structure and mathematical model

A two-armed seven-degree-of-freedom collaborative robot, similar to a human, has
seven degrees of freedom in each arm, which allows it to avoid some odd bit patterns in
space and to bypass obstacles in the task space relatively easily, thus achieving flexible
and accurate motion for each grasping object. Robot kinematics studies the relationship
between the robot joint motion variables and their derivatives of each order, and the
terminal poses (or robotic jaws) and their derivatives of each order. Compared to
traditional industrial robots, it has the ability to optimize the motion and dynamics
characteristics, the forces acting on the joints, etc. After completing the simulation
modeling, the Matlab tool is used to simulate its workspace and verify the validity of the

calculation results.

2.1 Double-arm mechanical structure

2.1.1 Mechanical arm structure

The single arm of the Xinsong dual-arm robot is shown in Figure 2-1, and it has
seven degrees of freedom. Unlike traditional six-degree-of-freedom industrial robots, the
single-armed Xinsong dual-arm robot with seven degrees of freedom can operate in more

complex environments.

. | mE I

Figure 2-1 Xinsong robot seven-degree-of-freedom single arm

The seven joints of this arm are labeled J1, J2, J3, J4, J5, J6, and J7, and it is
composed of the following main components.

(1) Base module: The base module is built into the shoulder of the two-arm
collaborative robot (J1), and the robot cable is connected to the integrated integrated

control cabinet through the base module interface to provide power supply and data
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transmission for the robot.

(2) Joint module: The robot is connected by multiple cast aluminum joint modules
with built-in drive units (J2~J5).

(3) Wrist joint: The robot is equipped with a wrist joint that integrates J6 and J7 axes.

(4) Electrical system: The electrical system consists of all the electrical components
(including drivers, connectors, cables, etc.) that supply and control the motors for each
joint.

In particular, the wrist joint is connected using a flange, and the robot ends with a
wrist flange with mounting screw holes and pin holes that can be used to mount the end
tool. The expansion I/O port on the flange can be used to connect the end-effector
structure.

The traditional DH model is built as shown in Figure 2-2. According to the DH
model building rules, the coordinate system of each joint is established by building Z;
axis,X; axis andY; axis in turn; then the four parameters of the robot rod's common
vertical length a, the angle a between the joint axes, the joint distanced and the robot
joint rotation angle are determined according to the relative position of the joint

coordinate system.[?®] .
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Figure 2-2 Relationship of coordinate system in DH model

The joint coordinate system of the robot is established according to the DH method

and schematically shown as follows.
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Figure 2-3 Coordinate system of robot arm

The robot's 14 joint coordinate system and base coordinate system are established
according to the principle of robot arm coordinate system establishment, as shown in the

following figure.

1 L

Kz
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Figure 2-4 Coordinate system of two-arm robot

The basic parameters of the single arm are shown in Table 2-1.

Table 2-1 Joint motion range of two-arm robot

Joint Range of Movement
1 -180 to +180 120
2 -105 to +105 120
3 -180 to +180 180
4 -115to +115 180
5 -180 to +180 180
6 -110 to +110 180
7 -180 to +180 180

2.1.2 Clamp and its connector structure

Since this dual-arm robot does not come with a gripper, so we purchased a flexible
gripper for clamping objects, using Raspberry Pi 4B to control the stepper motor on the
gripper, through python to write the Raspberry Pi GPIO control program can realize the
opening and closing of the gripper, in the actual test the gripper can clamp cups and other

objects, the parameters show that the gripper weighs 546g, can clamp the maximum 1.5kg
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The parameters show that the gripper weighs 546g and can grip objects of up to 1.5kg.
The gripper is powered by an independent power supply and comes with a stepper
motor controller with three interfaces, one of which is a ground port, and the other two

ports are given 0/1 or 1/0 to open and close the gripper, and the angle of opening and

closing can be controlled by the time of the given level.
89 150

186
T
) @Ae=

Figure 2-5 Mechanical structure of the gripper and its parameters

The connector is designed through Solidworks 3D modeling to connect the gripper

to the end joint. Both the dual-arm robot and the gripper come with four screw holes, and

the connector structure is shown below.

Figure 2-6 Gripper Connector

The two parts of the connector have multiple through-holes, and the connector entity

is printed by a 3D printer to connect the gripper, the connector, and the robot body

assembly.

Figure 2-7 Assembly diagram
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2.2 Robot kinematic model

2.2.1 Positive kinematics

In order to obtain the forward and inverse solutions of the robot kinematics, it is
necessary to solve the forward and inverse kinematics using the D-H method and the
analytical method, respectively, and verify their correctness using Matlab/Gazebo.

D-H modeling method!?®! is a modeling method proposed by Denavit and
Hartenberg, mainly used in robot kinematics. This method establishes a coordinate
system on each linkage, and transforms the coordinates on both links by a chi-square
coordinate transformation, and uses the chi-square change to establish the relationship
between the first and end coordinate systems in a system with multiple links in series 271,
Using the DH method to model the system of the robot, the D-H parameters of the robot
can be obtained as shown in Table 2-2.

Table 2-2 D-H parameters of robotic arm

Linkage Joint angle Linkage Connectin
Joint bias d;
number 0; length ai g rod
1 0; 0.310 0 /2
2 02 0 0 /2
3 03 0.400 0 /2
4 04 0 0 /2
5 Os 0.400 0 /2
6 Os 0 0 /2
7 07 0.175 0 0

Performing the mathematical derivation, the general equation for the linkage change

of the robot is
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The analysis of the positive kinematics of the robot arm is to calculate the positional
attitude of the end of the robot given the rotation angle of each joint, where the key
problem is to solve the mapping problem between the joint space and the operation space.

The expression for finding the end motion poses is as follows.

7T =1T(0)3T(0:)3T(05) 1T (04) 5T (05) $T (06) 2T (0:)  (2-2)

This result is expressed analytically as
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This matrix represents the correspondence between the position of the end-effector
center position based on the base coordinates and the attitude.

The results of the robot toolbox computational simulation simulations and the
derived computational results are compared separately to verify the correctness of the
positive kinematic solution. As shown in the figure below, the robot's position XYZ is
(0.975, 0.000, 0.310) and the pose is represented as RPY (0.000, 90.000, 180.000)
showing that the output results of the positive kinematic analytical solution assignment
match exactly with the simulation calculation results in the toolbox, proving that the

analytical solution results are valid.
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Figure 2-8 Positive kinematics robot end position schematic

2.2.2 Inverse kinematics

The inverse kinematics of the robot is based on the known end position of the robot
arm, and the commonly used methods are numerical and analytical methods. However,
the analytical method is relatively small and suitable for real-time control. To get a useful
inverse solution, an additional joint rotation angle should be added. The idea is to solve
61,05 0, based on the end attitude and joint anglefs , followed by8s 05 07 using the end
attitude, which is derived as follows[?8! The derivation is as follows

Assume that the positional matrix of the end center of the robot arm is known to be

p3+p3+p§—df—d§) )
2d1d2 (2 4)

0,==+ <7r — arccos<

where s; andc; representsinf, . cos6; respectively. Calculating p; + p; + p?

yields.

2 2 2 2 2
pz+py+pz_d1_d2> _
2d,d, 2-3)

0,==+L <7r — arccos (

After finding@; and based onp, and the previously assignedd; , find0, :

d, + dycosf, )) (2-6)

—d,sinf,cosfs

pZ
\/(* dy 84 03) >4+ (dl +d, 04) 2

0, = arcsin( — arctan(

According to the analytical solution ofp, ,p, contains both¢; , whilef, ,05 .0,
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have been solved, again brought into the original equation can be obtained

0, = arctan( (p‘”ny — pynz) (mynw — m"cny) >
— arctan (_ (pxny — pynx) ) 2-7)
Eq.
m, = — d254C3

n, = d284CQC3 + (dl + d2C4) So
m, = dy8s¢ocs + (dy + dacy) so

n, = d15483
5, 6, and 7 joint angles are used to determine the end motion attitude of the robot
arm, using the conditions ¢1' , and {T' = T (6,) 3T (0,) 3T (65) 3T (A,) can be found at
T, and.

N1 M2 Mg Py

ip=(97);ir=| " " s P 2-8)

N3 M3z M3z P,

0 0 0 1

From this, we can find0s~ 6~ 6; as follows

05 = arctan2 (nss,n3)
0 = arccos (— n93) (2-9)

97 = arctan?2 (ngg, TL21)

The end-joint angle of each joint is calculated by importing the end-jaw posture
matrix obtained previously as a known quantity into the analytical solution formula, and

referring to the derived analytical solution, the end-joint angles are as follows
0=[0 pi/2 pi/2 pi pi pi O]

The inverse solution is performed and the result of Q1 is found as
[-0.0000 1.5708 -0.6387 3.1416 0.0000 3.1416 -0.9320]

A comparative validation of the calculated results is shown below.

0 01 0.975

100 0

010 0.31

00O 1

T =
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As can be seen in Figure 2-9, the left figure shows the end poses displayed by
inputting each joint angle Q1 (radian system), and the right figure shows the results
after plotting the end poses matrix, where the positions XYZ, correspond to the poses
RPY results, verifying the accuracy of the kinematic algorithm and proving that the
algorithm is effective.
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Figure 2-9 Comparison of simulation results verification

2.2.3 Robot Workspace Analysis

Therefore, the flexibility of the robot can be verified based on the intersecting
volumes as an evaluation index in the case of tightly coordinated movements. When
evaluating the flexibility criteria, it is important to look at the consistency of the operation
of the same target, e.g., the ability to move the object smoothly in any direction in the
space, rotation, etc.[*’! . When the point A is the center of mass of the target object, the
surrounding points can be studied according to the kinematic relationship between the
two points within the workpiece, and then the degree of coordinated operation of the left
and right arms can be analyzed. J represents the Jacobi matrix, and the area enclosed by
the red line represents the intersecting volume of the operable ellipsoid, as shown in
Figure 2-10. Regarding the calculation of the spatial volume of the intersecting ellipsoid

can be referred to TOMMUDB% method for the approximate metric calculation.
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il

Figure 2-10 Coordinated execution of tasks by both arms

After calculating the above Jacobi matrix, D-H parameters, and positive and
negative kinematics solutions, the robot toolbox was applied again to re-build the robot
arm model of the two-arm robot and set the corresponding robot parameters as shown

in Figure 2-11.

Figure 2-11 Matlab model of a two-armed robot

The simulation was performed for the workspace of this two-armed robot, and

the simulation results were obtained as shown in Figure 2-12.

500

-500

B

1000 500 0 -500 -1000-1000

Figure 2-12 Simulation of a two-armed robot workspace

Due to the limitation of computation, the simulation points are set to 20,000
simulation points. From the figure, it can be seen that the distribution of the simulation

points is relatively dense near the center region of both arms, showing an almost
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ellipsoidal shape.
After that the simulation points in each space are normalized with the volume of the
ellipsoid by the formula:

V.

Vi ax (Vi VoV

(2-10)

The resultingf}l represents the ellipsoidal volume of the intersection operability at
point i after normalization process, and V; represents the ellipsoidal volume of the
intersection operability at point i. The geometric topological relationship between a single
and the total. Using the visualization process, we continue to program the graphical
solution of the distribution of the flexible operation area of the two-armed machine heat
in space, and use the chromatographic way to indicate the degree of flexible operation,
whose color is closer to the red end, representing the better operability the higher

flexibility, the specific results are shown in Figure 2-13 below.
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Figure 2-13 Schematic diagram of flexibility analysis in ellipsoidal space

From the figure, it can be analyzed that flexibility, as an indicator of smooth robot
operation, shows a certain distribution pattern, with the robot body constrained at the
center of the robot, so flexibility is poor. Looking outward to the center of the entire
collaborative space, the color becomes red, indicating that the flexibility becomes better.
Overall, the robot in the overlapping area of the workspace, is from the outer edge toward
the central area is the process of gradually getting better flexibility, which also verifies

the correctness of the previous hypothesis.

2.3 Robot dynamics model

The problem studied in dynamics is the relationship between the forces acting and
the motion. The corresponding mathematical model is first established, and then the

structural characteristics of the robotic arm, which is nonlinear and has complex coupling
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relationships, are modeled and analyzed by simulation. After completing the results of
the robot arm dynamics analysis, the joints are analyzed for load bearing and force
changes on the robot arm, etc., so that the motion can be changed for subsequent
optimization to equalize the forces on the joints. The kinetic equations can be used to
determine the relationship between the forces and moments applied to the corresponding
joints, the robot acceleration, the rotational inertia and the angular acceleration!! .

Robot dynamics research is based on the idea of solving force problems recursively
from back to front, or from front to back. The corresponding research methods are both
the Newton-Euler method based on force balance and the Lagrangian method based on
energy balance. The relationship between the forces required to cause motion, i.e., robot
motion, inertia, and moments, is studied.

Kinetic positive problem: find the motion response with known joint moments.

Kinetic inverse problem: find the joint moment for a known motion.

As shown in Figure 2-14 below, the robotic arm is simplified into a two-link
mechanism, which is modeled and analyzed. Lagrange's equation is used to establish the

dynamics equation.

Figure 2-14 Schematic diagram of the model of the two-linked rod

For the center of mass set tom;,m, and the length of the connecting rod set to
dy,d5,0:1,0 is the angle of rotation of the connecting rod. Then calculate the kinetic
energy K and the potential energy P, of the first connecting rod.

K, = %mldfef (2-11)

P, =mgd,cosb, (2-12)

Kinetic energy of the second linkage K> , potential energy P»

K,= %mzvgz (2-13)
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P, =m, gd,cosb, (2-14)

And the relationship between velocity and position regarding the connecting rod is
vi =@3 + 93
z> = d,cos0, + d,cos (6, + 6,)
iy = —d,0sinf, — d, (01 + 02> sin (6, + 6,)
Yo = dysin6, + d,sin (6, + 6,)
Yo =d; 0, cosf, — d, (01 + 02> cos (0, + 0,)

The kinetic potential energy equation for reintegrating the second linkage is

1 1

K,= §m2d12é12 + §m2d22 (91 + 02) ® ¥ madyds (012 + 9192)c0s02 0-15)
, = mog|dysin, + dysin (6, + 6,) ]
The expression of Lagrange's equation is given by
d oL _ oL =1,2,..,n (2-16)

‘T At 9q,  0q."

So, the equation ¢ is representing the coordinates, ¢ is representing the
corresponding velocity andT; is the force matrix.
L=K—P K=K1+K2 P=Pl+ P2

Therefore, finding the partial derivative and inverse of L yields

gg = (my + m2) 20, + mod? (8, + 0,) + modyds (20, + 0,) cos 6.
1
d dL e ) o
& 5. = (m )0t mod? (8 +0) + madsdy (20, +0,) cos0; —maddy (20,0, + 03 )sin 6,
oL
8791 = - (my + my) gd,cos B, — m, gdscos (0, + 6,)
gé[/ =My d22 (01 + 02) + m2d1d2élcos 92
2
igéj - m2d22 (01 + 92) + m2d1d2C0892 — mzdldgélégsinog
2
oL N
90, = -mod,d, (01 + 6, 02) sin@, — my, gd,cos (6, + 6,)

Kinetic equations for the moments on the robot arm7; and .75
T, =[(my + mo)di + mod3 + 2mod,dycos05]0, + [madi + mod,docos ],
- modids (291 0, + 62 ) sin®, + (m, + ms) gd;cos B, + m,gdscos (0, + 0,) (2-17)
Ty = [mod2 + mad; dscos 0510, + mad20, + mod, ds02sind, + ms gdscos (0, + 05)

By a similar derivation, expressions for the total kinetic energy and total potential
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energy of the robot can be obtained, and the Lagrangian function for the two-armed

robot system is found as

L=K-—-P
1S\ oT, . T/ 1 — . n (2-18)
:§;;;Trace (30 50, )9 0, + §;I¢n9¢2+ ;migTTr
The kinetic equations of the system are
_d 0L OL
"t gy, 09,
oT; . oT]
_;;Trace<89k T} >0k+Ia,6
n J J 62Tl 8T
+ ;;;Trace (80k89m I, a0, )eke (2-19)

= ZDUG + L:6; + ZZDUQ 0.+ D,

j=1 k=

The inertia is expressed in the equation as

6
0T, T}
D= Z Trace (80 aeklp 50, )
The gravitational force is expressed as

p=maxi,j,k
b= Z( mo” G5

The Lagrangian method is a relatively simple method for solving the dynamical

equations of a system as opposed to other relatively simple methods such as the
Newtonian Eulerian method, where the driving moment of each joint is associated with

the derived dynamical equations.
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2.4 Summary of this chapter

This chapter analyzes the mechanical structure of the robot's arm and its gripper,
designs and prints connectors for connecting the robot to the purchased gripper using a
3D modeling tool, and introduces the Raspberry Pi into the control system for controlling
the opening and closing of the two grippers. The kinematic model of the robot was
derived by mathematically deriving the forward and reverse kinematic solutions of the

robot and bringing the results into the simulation environment to verify their correctness.

3 Visual perception and recognition localization

The vision system in this paper runs on Ubuntu 16.04 and ROS kinetic, and the

object recognition part of the deep learning neural network program is based on the

framework Tensorflow 1.14.0.

3.1 Introduction to the program dependency environment

Ubuntu is currently the most popular distribution of Linux desktop system, and is
loved by developers for its stability and ease of use. The Ubuntu project is openly
committed to the principles of open source software development, encouraging people to

use free software, study how it works and develop improvements.
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ubuntu TensorFlow

Figure 3-1 Operating Environment

ROS system is a loosely coupled distributed architecture based on publish/subscribe
mechanism, which can be used to achieve intelligent control of various robotic drones.
ROS is widely used in robotics systems for its power and ease of use.

ROS contains functional modules such as messaging, recording and playback of
messages, and function packages.? . The following is a description of its main functions.

(1) Message transmission

The ROS control system is composed of a total number of nodes with different
functions. Nodes can communicate with each other through ROS predefined message
format or user-defined message format. Currently, ROS supports three types of
communication, topic for one-way message sending/receiving, service for two-way
message requesting/responding, and action for two-way message goal/result/feedback.

(2) Recording and playback of information

Data is recorded and played back through 'rosbag', a feature that not only avoids
reusing cadaver robots for algorithm development and validation, but also ensures
consistency of data from one experiment to the next.

(3) Function package

ROS has a large number of callable function packages, this article mainly uses
Movelt, Easy handeye, camera calibration these packages.

Movelt is a robotics-related toolset that integrates a variety of SOTA libraries that
allow users to configure robot UDF files for simulation or physical robotics including:
motion planning, manipulation, 3D sensing, kinematics, collision detection, control, and
navigation.

Easy handeye is a hand-eye calibration method provided by ROS, which provides
us with a set of visualization tools to complete the external reference calibration for both
eye-in-hand and eye-out-of-hand scenarios.

Camera_calibration is a camera calibration function package based on Zhang
Zhengyou's calibration method, which can get the camera's internal parameter matrix,

aberration coefficient, etc. through the algorithm.
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ROS supports writing a launch file to start multiple nodes at once, or you can preset
parameters in the launch file and read them in the program, or you can use the rosrun
command to start a single node. string, etc.

TensorFlow is a deep learning framework developed by Google that supports
computing using CPUs or GPUs.[33 TensorFlow supports multiple platforms and it is

widely used for programming implementations of various machine learning algorithms.

3.2 Camera selection

The cameras commonly used in industry contain monocular cameras, binocular
cameras, and cameras with structured light ranging capabilities, and since this experiment
requires more accurate 3D point cloud information, the literaturel®#! As this experiment
requires more accurate 3D point cloud information, the literature points out that
monocular cameras have very limited ability to obtain depth information, and the target
object itself is thicker when its positioning error is large, while binocular cameras are

generally more expensive. Therefore, this paper will use the Astra Pro camera with

structured light ranging to capture image information and distance information.

o I _

-

Figure 3-2 Astra Pro Camera

This camera has two microphones, a face perception sensor, an infrared projection
module, an infrared image acquisition module and a color image acquisition module. The
resolution of the color image is 640*480, the frames per second (FPS) is 30, the depth
image resolution is up to 1280*1024, the FPS is 7. The theoretical positioning error is
plus or minus 3mm, the field of view of the depth information is 58.4 degrees horizontally
and 45.5 degrees vertically. The data transmission delay is 30-45 milliseconds, and it
supports Windows, Linux system for development and use.

Depth ranging techniques can be divided into passive ranging techniques and active
ranging techniques. Passive ranging technology means that the sensor receives the light
emitted or reflected from the scene and forms an image.3% The typical passive ranging

technique is binocular vision ranging. Active ranging techniques are hardware systems
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that rely on their own light emitting receiver modules to emit light and receive it after
reflection, and record this time for distance calculation to obtain a depth image. Common
active ranging techniques include TOF ranging techniquel*®! Phase laser ranging
techniquel”! and structured light ranging techniques(3%! .

The camera sends light pulses to the object and uses the sensor to receive the light
returned from the object, because the speed of propagation of the light signal in the air is
a constant value, so as long as the time of flight is known, through the calculation can be
derived from the corresponding target distance, TOF range measurement will use this
principle to measure the distance of the target entity®®! The principle can be expressed by
the following equation.

=X (n*)\ + i*x) (3-1)
2 360

Where A is the wavelength of the signal, 7 is the number of wavelengths
experienced by the signal during the flight time, andy 1is the phase of the signal when it
returns.

Phase laser distance measurement is accurate to the micron level, using a modulated
signal to modulate the light intensity and measure the phase difference to indirectly
measure the time and calculate the distance value to achieve the distance measurement
function.

The Astra Pro camera used in this paper uses structured light ranging technology,
which is based on the principle of infrared projection sensors emitting laser scatter over
distance through grating diffraction, the infrared camera can capture the laser scatter
image in the visible range and form a parallax map, combined with the camera model to
calculate the depth value of each pixell’! The depth value of each pixel can be calculated

by combining the camera model.

Figure 3-3 Color and depth image information
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3.3 Camera calibration principle and its implementation

The purpose of camera calibration is to obtain the internal and external parameters
of the camera in order to reduce distortion and to complete the transformation between
the camera coordinate system and the pixel coordinate system. The calibration uses points
with known positions in space and their positions in the image to estimate the parameters
in the camera model. While the calibration plate of the traditional calibration method is
three-dimensional and needs to be very precise and difficult to produce, the method
proposed by Professor Zhengyou Zhang!*!l Between the traditional calibration method
and the self-calibration method, the Zhengyou Zhang calibration can be performed by
printing out only a checkerboard grid. It also improves the accuracy and is easy to operate
compared to self-calibration. Zhang Zhengyou calibration method is widely used in the
field of camera calibration.

The basic principles of calibration are.

X
U v X
slv|=K[r r r3 t] =K[r mn t]|Y
0 (3-2)
1 1 1

Assume that the template plane is in the plane of the world coordinate systemz. =
0, where K is the internal parameter matrix of the camera,[X Y 1]7 is the flush
coordinate of the template screen edge, [u v 1]” is the flush coordinate of the
corresponding point projected on the template plane onto the image plane, and
[, 7> 73] andt are the rotation matrix and translation vector of the camera
coordinate phase system with respect to the world coordinate system, respectively, and

the rotation matrix can be expressed as

H:[h1 ho h3]:/\K[7’1 T2 t],’ﬁ: %Kﬁlhl,’f’zz %Kulha (3-3)
According to its property we obtain7 7. =0 and |7 [|=|r]=1 , using this

property we can obtain two constraint equations for the camera internal reference lifting.

{ WTK 'K 'hy=0
(3-4)

thKitKilhl - hQTKitKilhz
In order to solve for the 5 unknown internal parameters of the camera, the number
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of images to be captured is greater than or equal to 3[4,

Use GitHub's camera calibration code based on Zhengyou Zhang's calibration
method*?! of the camera calibration code, complete the following steps, you can obtain
the internal and external parameters of the camera. The specific steps are.

(1) Print a 7*9 calibration plate as shown in Figure 3-4 and paste it onto a flat object,
keeping the calibration plane flat. Use calipers to check if the distance between the
features of the printed pattern is correct. For the pattern in the calibration plate, the
distance between the intersection points of the black and white corners should be exactly
3cm.

(2) Hold the calibration plate, fix the image sensor, move and rotate the plate.

(3) Start the recording program, and then press the space bar to record each image.
The calibration pattern (indicated by the color lines overlapping the calibration pattern,
as shown in Figure 3-5) should be detected, and the image should be clear and stable.

(4) The calibration plate should be in the calibration plane at all times, and the
calibration process should be rotated and calibrated at at least two distances, with 100

images obtained for each calibration set.

Figure 3-4 Printed Calibration Plate Figure 3-5 Calibration Calibration Pattern

Repeat steps 1-4 twice to complete the calibration of the RGB and IR sensors, after
the completion of the calibration program will generate a .yaml file in the specified path,
this file is the camera's internal parameters file, the path of the parameters file added to
the ROS package under the corresponding launch file after each run the camera image
system will get the internal parameters of the calibrated image.

The following results were obtained after calibration.

Table 3-1 Camera calibration results

Parameter RGB Sensors Infrared sensors
Name

602 0 304
Internal

0 604 265 574 0 315
arameter 0 0 1 0 585 2l
P 0 01
matrix
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Distortion [0.11, -0.32,0.01,0.014, 0] [574,0,315,0,585,212,0,0,1]

factor

3.4 Positive and negative changes of the camera model

Robot vision systems usually have the following coordinate systems!3! : The

(1) World coordinate systemw : The coordinate system associated with the real
world of the shooting.

(2) Camera coordinate systemc : A coordinate system fixed on the camera with the
origin at the optical center of the camera, the z-axis coinciding with the optical axis, and
the x- and y-axes parallel to the coordinate axes of the image plane.

(3) Image plane coordinate system: The coordinate system associated with the
virtual image plane. The origin is at the intersection of the optical axis and the image
plane.

(4) Image pixel coordinate system? : is the discrete coordinate system with the
origin of the coordinate system in the upper left corner of the image.

The surface camera model is to establish the transformation relationship of a known
point in space coordinates from world coordinates into image pixel coordinates, such a
change is the positive change of the camera model, and the process can be expressed in

the equation as
p" = pt—q° = (3-5)
wherep” is the world coordinate system andp® is the camera coordinate system,
and their transformation relationship can be expressed as follows
p°="°H,p" (3-6)

where “H,, is the chi-square transformation matrix from the camera coordinate
system to the world coordinate system, ¢ is the image plane coordinates, and its

transformation relationship withp® can be expressed as

r=(0)= ()

q'is the pixel coordinate, which corresponds to the image coordinate as

31



Beijing Jiaotong University Graduation Design (Thesis)

Full Text
v
Z - S_y +C,
=\ )7 . (3-8)
5 e

whereS, andS, are the scale factors, respectively, and the interval of pixels on the
CCD chip. C,,C,are the coordinates of the projection point of the optical center on the
image plane. If the lens aberration is not considered the complete camera model can be

expressed by the following equation.
c S
o] e | P 0| B (3-9)
 HE P
0

M is a 3*4 parameter matrix, determined by the internal and external parameters of
the camera.

In general the inversion of the camera model is not possible, the projection process
transforms the 3D information to 2D and the distance information is lost.[**] As shown in
Figure 3-6, the projection of each point on the image is the same, so the world coordinates

cannot be determined from the image coordinates.

Camera with
optical center

P;®

P,®

P,@®

[ 04

Figure 3-6 Inverse variation of the camera model

In this case, a camera with depth ranging function can be used to obtain distance
information to complete the conversion from pixel coordinates to world coordinates.
ROS provides a number of tf (transform) related functions for coordinate changes.

As long as the relationship between two coordinates is known, the user can directly call
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the related functions to broadcast a custom coordinate change relationship, and other
nodes can subscribe to such a tf relationship to complete the transformation of points in
different coordinate systems. Other nodes can subscribe to such a tf relationship to

transform points in different coordinate systems.

3.5 Convolutional neural network-based target detection

Deep learning target detection algorithms are classified into two categories: two-
stage target detection algorithms and single-stage target detection algorithms according
to the presence or absence of a candidate frame generation stage.*! The algorithms are
divided into two categories: two-stage target detection algorithms and single-stage target
detection algorithms. Scholars usually measure the advantages and disadvantages of
neural networks in terms of speed and accuracy, generally speaking, single-stage target
detection neural networks have faster speed, while two-stage target detection networks
have higher accuracy.[*3] The current common single-stage target detection networks have
higher speed and higher accuracy. Current common single-stage target detection
networks include YOLO, SSD, etc., and two-stage neural networks include Faset-RCNN,
Faster-RCNN, etc. Literaturel#] It is pointed out in the literature that the SSD network
uses 300*300 RGB images as training data, and the mAP of this model reaches 77.5%
after training the model with COCO data set, which is better than YOLO and close to
Faster R-CNN, so this paper uses the SSD model with both accuracy and speed as the
detection model for target recognition. The comparison is shown in the following table.

Table 3-2 Comparison of different deep learning models mAP6]

Methods mAP
SSD 77.5

Faster R-CNN 75.9
YOLO 57.9
Fast R-CNN 68.4

Figure 3-7 shows the structure of the SSD network. The SSD method establishes the
structure based on a feed-forward convolutional neural network, and adds numerous
auxiliary structures after the VGG-16 base network structure to construct a feature

generation perceptron
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Figure 3-7 Structure of SSD deep learning neural network

Each multiscale feature block of the SSD network reduces the height and width of
the feature map provided by the previous layer. These blocks then use each element of
the feature map to expand the perceptual field on the input image. The closer a scale
feature block is to the top, the smaller its output feature map is and the fewer anchor
frames are generated based on the feature map. In addition, the closer a feature block is
to the top, the larger the receptive field of each element in the feature map, and the more
suitable it is for detecting larger objects. Since SSD generates different numbers of anchor
frames of different sizes based on the underlying network blocks and each multi-scale
feature block, the class and offset of the anchor frames are then predicted to detect objects
of different sizes.

COCO is a large-scale object detection, segmentation and captioning dataset with
330,000 images, of which more than 200,000 have been annotated and can be used
directly in supervised learning training. The dataset hosts 80 types of objects and has a

wide range of applications.

Dataset examples

Figure 3-8 Example of CoCo dataset

After the training of the neural network is completed, the modules required for ROS
are added, and the pixel coordinate points and depth values of the center of the object

bounding box are extracted by subscribing to the color image information and depth
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image information, and the 3D coordinate values of the object in the camera coordinate
system are calculated using the distance formula, after which the ROS message (msg)
format as shown in Table 3-3 is customized, and the object The ROS message (msg)
format as shown in Table 3-3 is customized to publish the object type and positioning
information as a topic for other nodes to use.

Table 3-3 Custom Message Format Pseudocode

Customized msg message format

1.string Types of objects
2. float32 x coordinate value
3. float32 y coordinate value

4. float32 z-coordinate value

3.6 Visual positioning error analysis

The effectiveness of the vision system is measured by placing CoCo data set training
objects such as water glasses, cell phones, benches, computers, etc. in the camera's field
of view.

Using the rqt tool that comes with the ROS system to visualize the vision system's
real-time inspection screen, the image uses a bounding box to frame the object, and the
depth value in the center of the bounding box is displayed visually on the image. The
information output in the vision program terminal has information about the object type
and its 3D coordinates. The number after the object type information represents the
number of the object in the camera's field of view, this number starts from 0, where
laptop stands for laptop and chair stands for chair, the overall overview diagram is

shown below.
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Figure 3-9 Visual recognition terminal

It is found that the accuracy of object location recognition is greatly affected by the
light, and the work of the infrared sensor will be affected when the indoor light intensity
is high resulting in the loss of depth information. After adjusting the indoor light to the
appropriate range, the following terminal output and the actual measured depth
comparison information were measured.

Table 3-4 Object coordinate information comparison table (unit:mm)

Object Name Output Actual Coordinates
Water Cup (33.2,31.7, 550) (32, 31.5, 547)
Cell phone (42.5, 41.6, 560) (42, 41.5, 556)
Computer (56.2,49.7, 680) (56.2,49.7, 683)

Bench (375, -42, 1086) (364, -40, 1090)

Bottle (426.1,-92,997) (420, -90, 1002)

Mouse (327, 42, 860.5) (325, 47, 860)
Keyboard (497, 43, 762.1) (495, 49, 760)

Table 3-4 in the output coordinates and the actual coordinates are calculated after five
measurements, the analysis shows that the absolute error of positioning are within 1cm,
the reason for the error may be the influence of the environment, such as the light source,
the color of the object, etc., may also be caused by the distance measuring principle of
the camera itself, because this paper only study the dual-arm robot to grasp larger objects
such as water cups, bottles, so the error can be considered within the acceptable range.
The error can be considered to be within the acceptable range.

Due to the thickness of the object itself and the fact that the vision system uses the

method of extracting depth information from the center of the bounding box to calculate
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the 3D coordinate system leads to a centimeter offset between the localization point and
the optimal grasping point, which can be reduced later through experimental testing.

To obtain the object centroids more accurately one can use the method proposed in
the literature!?# The proposed method uses ORB descriptors to confirm the target contour
and match the centroids for the problem that the detection accuracy of neural networks
may be low and the object contour centroids are not estimated accurately.

In order to exclude abnormal localization values and reduce the impact of errors on
the final experimental results, the vision system records the coordinate information of
the same object collected five times as shown below, excludes the values that are not
within the mean plus or minus double the standard deviation, and uses the mean value of
the last unexcluded point as the final published 3D coordinate point. The method is
codified using the numpy library in the python library.

68.3%

Figure 3-10 Confidence interval

3.7 Summary of this chapter

This chapter introduces the selection of camera, the principle of internal parameter
calibration and its implementation, the selection of deep learning model for object
recognition and its implementation, and finally the experimental test of the whole vision
system, which analyzes the causes of the localization error and proposes a method to

reduce the localization error applicable to this vision system.
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4 Dual-arm collaboration and intelligent control

This part adopts ROS (Robot operating system) to realize the two-arm collaboration
and intelligent control of the robot, which depends on the same environment as the vision

system.

4.1 Creating the robot model file

Create the urdf file based on the parameter information of the real robot, and make
the joint coordinate system of the robot in the simulation environment consistent with the
joint coordinate system of the real robot. In Figure 4-1, xyz represents the translation
relationship of each coordinate system, rpy represents the rotation relationship, base link
is the robot base coordinate system, and the prefix 1/l refers to the joints and links of the

left and right arms, respectively.
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xyz: -0.40 0
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y: 1.5708 -0 0

1ink7

Figure 4-1 Robot URDF file parameter structure

The Rviz visual debugging interface is used to observe the trajectory and joint
positions of the robot in the simulation environment, compare the execution of the real
robot, and make the two consistent through debugging. The urdf model of the robot can
be checked for correctness with the ROS visualization plug-in.

Use Movelt Setup Assistant to configure the robot, add collision parameters to the
robot in the virtual environment, add the left manipulator and right manipulator groups,
preset the initial pose of the robot, preset the inverse solver to IK _FAST, add the ROS
control motion controller, and generate a series of .launch/.yaml/CmakeList/package
initial files.

39



Beijing Jiaotong University Graduation Design (Thesis)

Full Text

Start Define Planning Groups
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each subset of the robot you want to plan for.Note: when adding a link to the group, its
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Figure 4-2 Movelt visual configuration window

4.2 Hand-eye calibration principle and its implementation

In the previous chapter, the internal parameters of the vision system have been
calibrated to reduce the effects of aberrations, in order to obtain the relationship between
the camera coordinate system and the robot base coordinate system, hand-eye calibration
is also required®”!

According to the location of the camera can be divided into two categories of robot
hand-eye system, one is Eye-in-Hand, this kind of system is mounted on the robot arm,
the other is Eye-to-hand, this kind of system is mounted on the top of the robot arm?’! .
This article uses the Eye-to-hand hand-eye system, and the calibration of this system will
be introduced next.

Assuming that the camera coordinate system isC' and the base coordinate system
of the machine isW , assuming that the end joint coordinates and the gripper coordinates
are the same, after fixing the calibration plate on the robot arm gripper, using the
calibration plate coordinates instead of the robot arm end-effector coordinates, the
position of the calibration plate coordinate system relative to the camera coordinate
system and the position of the robot arm end-effector relative to the camera coordinate
system have the same transformation relationship. The relationship between the robotic
arm end-effector and the robot base coordinate system can be derived from the kinematic

derivation of the robot so that the calibration plate moves within the visual range of the
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camera, the coordinates of the corresponding point on the calibration plate under the base

coordinate system and the coordinates of the calibration plate under the camera

coordinate system are recorded, and the external parameter matrix of the camera is

derived by the hand-eye calibration algorithm [>!1 The Eye-to-Hand system is shown in

Figure 4-3.

Ye
; ; ¢
Xe
Zc

Zw
w

Yw
X

Figure 4-3 Eye-to-hand diagram

Assuming that(X¢ Y* Z¢)” is the point under the camera coordinate system of the

marker point in calibration plate z and(X™ Y“ Z")” is the point of the marker point

under the coordinate system of the robot arm, their correspondence can be expressed by

the equation

Xe X" r Ty T3 t, || XY
Y¢ o |: R t i| Y® o T4 T5 Te ty Y
/A 000 1 A T Tg T9g tz A
1 1 0 0 01 1
After n times of calibration Eq.(4-1) can be expressed as
.
X" v zZ" 10 0 0 00 0 0 01| m [ X1
0 0 0 0 X" v Z" 10 0 0 0| rs Yy°
0 0 0 00 0 0 0 X\ Y Z,* 1||t, Zy¢
XY 210 0 0 00 0 0 O0fln| |X*
0 0 0 0 Xuo" VY Z," 1 0 0 0 Of|rms| |Yo°
0 0 0 00 0 0 0 Xo° Yo' Z,° 1||re| | Zo°
t, :
XYy z"” 10 0 0 00 0 0 01|r X,
0 0 0 0 X,”Y." Z"10 0 0 0|rs Y,°©
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The above equation can be decomposed into the following equations.

Xlw Ylw le 1 T1 ‘leC
X" Yo Zy 1| m X,°

XY Z," 111t X,
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By observation it can be seen that all the above equations are Az =5 , where 4
matrix dimension isn x4 ,z is4x1 ,b isnx1 ,and the matrix4A can be decomposed

into a regular orthogonal matrixQ and an upper triangular matrixr , i.e.
A=QR (4-6)
Then the solution of the linear equation Ax = b is

X=R"'Q"% (4-7)

Separately to the equation(4-3) ,(4-4) , and(4-5) Performing the QR decomposition,
1.e., the transfer matrix can be solved as

T T T3 I,

- Ty Ts Te Uty (4-8)
T7 Tg To t,
0 0 0 1

In the hand-eye system required in this paper, the combined form of Eye-to-hand
can make the camera get a better field of view, and the stability of the image information
can be guaranteed(*®] Therefore, the Eye-to-hand system is used in this paper. The hand-
eye calibration can be implemented through the open source code Easy handeye on
Github, which samples the robot position and tracking system output through tf. Through
the OpenCV library's Tsai-Lenz!*’! algorithm is implemented to compute the calibration
matrix of the eye-to-robot base coordinate system or eye-to-hand and to store the results
of the calibration. At each subsequent start-up, the results of the calibration procedure are

published as tf transformations in the ROS system for subsequent use.
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Figure 4-4 Hand-eye calibration program interface

The program subscribes to the coordinate change relationship (tf) from the robot's
base scale to the end-effector and the image topic. After printing the calibration plate, the
arm with the plate is moved to a different position and repeated tens of times to obtain
a .yaml file with external parameters.

After the parameters are included in the robot's launch file and the hand-eye
calibration, the camera coordinate system is displayed visually in the Rviz simulation
environment, with red, green and blue representing the positive direction of the xyz axis
respectively. The relationship between the camera coordinate system, the robot base
coordinate system, and the joint coordinate system can also be clearly observed through
this interface.

After the relationship between the camera coordinate system and the robot base
system is determined, the coordinate system of the two-arm robot and its vision system
as a whole is established. 18 coordinate systems are shown in Figure 4-5, including 14
coordinate systems of the two-arm joints, 2 gripper coordinate systems coinciding with
the end joint coordinate system, 1 camera coordinate system, and 1 base system of the
two-arm robot. The coordinate system of the robot in the simulation environment is
consistent with that of the real robot, so that the camera coordinate system is located at a
horizontal distance of 1.2 m and a vertical distance of 1.25 m from the base scale system

of the robot, and the X-axis is kept at an angle of 45 degrees from the horizontal plane.
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Figure 4-5 Schematic diagram of the overall coordinate system of the hand-eye system

4.3 Task-based collaborative motion planning with two arms

4.3.1 Virtual scene construction and motion planning

In order to make the two-armed robot avoid obstacles when performing tasks, this
paper uses the built-in function of Movelt to add collision objects, creates a rectangular
body with a length and width of 80cm and a thickness of 3cm, this object is an abstraction
of a desktop in a real environment, and restricts the planning space of the robot to a space
of 2m*2m*2m. By subscribing to the 3D coordinate information and kind information of
the object and the tf relationship obtained from the topic generated after hand-eye
calibration, the 3D coordinate points of the object under the camera coordinate system
are transformed into 3D coordinate points under the base coordinate system, and the task
contents of the left and right arms are distinguished by the positive and negative x-values
under the robot coordinate system, and the coordinate points of the objects located on
both sides of the robot are designated as the planning target endpoints of the robot gripper,

respectively.
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Figure 4-6 Virtual environment scene setting

The initial state of the real robot and the robot in the simulation environment are
kept the same, the motion path of the robot from the initial position to the position to be
gripped is calculated by TRAK-IK integrated in Movelt, the pose of the robot gripper to
grasp the object is preset, and since the action of pouring water after gripping the object
is fixed, the script program movej_pose is used directly to develop the end position and
Since the action of pouring water after gripping the object is fixed, the end position and
pose are programmed directly using the script movej pose for the action after gripping

the cup and for the recovery.

4.3.2 Kinematic solver

To calculate the joint rotation information, a kinematic solver is needed, and ROS
comes with several kinematic solvers, such as KDL, TRAK-IK, IKFAST, etc., which the
user can choose according to his needs. The final result is a very stable solution that can
be computed in the latest processors with a speed of 5 microseconds.

The joint-constrained pseudo-inverse Jacobian implementation of KDL is used as a
solver for generic manipulation chains by various ROS packages and Movelt! Researchers
at TRACLabs encountered a large number of solution errors when using the inverse

kinematic functions of KDL on a robotic arm. They attributed these problems to the fact
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that theoretically sound Newtonian methods fail in the face of joint constraints. As a result,
the developers created TRAC-IK to run two different IK methods simultaneously.

TRAK-IK is an enhanced version of the KDL solver that detects and mitigates the
local minima that may occur when the joint limit is encountered during gradient descent.
The formulation uses a quasi-Newton method that can better handle non-smooth search
spaces. By combining these two methods, TRAC-IK outperforms the two independent IK
methods with no additional runtime overhead for small chains and a significant time
improvement for large chains.

As shown in Figure 4-7, the red part of the KDL solver shows the locations where the
solution cannot be found, and the white part shows the parts where the solution can be

found, so the comparison shows that TRAC-IK can find the kinematic solution in more

locations.

Figure 4-7 Comparison of KDL & TRAC-IK solution results

In this paper, we use IK-FAST to solve the kinematics of the robot. The algorithm
of IKFAST uses openRAVE to generate the kinematics plug-in for cpp. The two-armed
robot requires splitting the robot's model file urdf file into two urdf files for the left and
right arms and converting the urdf file into a dae format file using the Movelt plug-in.
After setting the degrees of freedom of the robot and the name of the exported file, the
program will automatically solve the kinematic equations of the robot and export the
kinematic plug-in. Modify the path of the plug-in in the robot kinematics configuration
file to IKFAST to complete the configuration of the kinematics plug-in.
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4.4 Closed-loop control of two-arm collaboration based on vision

perception

4.4.1 PID control

PID control is a control loop mechanism that uses feedback and is widely used in
industrial control systems and various other applications that require continuous
modulated control. the PID controller continuously calculates the error value as the
difference between the desired set point (SP) and the measured process variable (PV) and
corrects for the proportional, integral and derivative terms (denoted P, I and D,
respectively).%

P is proportional to the current value of the SP-PV error e(t). For example, if the
error is large and positive, the control output will be proportionally large and positive
considering the gain factor "K". Using only proportional control results in an error
between the set value and the actual process value because it requires an error to produce
a proportional response. If there is no error, there is no corrective response.

I takes into account the past SP-PV error values and integrates them over time to
produce the term I. For example, if there is a residual SP-PV error after the application
of proportional control, the integration term eliminates the residual error by adding a
control effect due to the accumulated historical value of the error. When the error is
removed, the integral term will stop growing. This will cause the proportional effect to
decrease as the error decreases, but this will be compensated by the growing integral
effect.

D is an estimate of the future trend of the SP-PV error, based on its current rate of
change. It is sometimes referred to as "anticipatory control" because it effectively seeks
to reduce the impact of SP-PV error by imposing a control influence generated by the rate

of change of the error. The faster the change, the greater the control or damping effect.
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4-8 PID control schematic

ROS has an integrated PID control package, this package runs as a node in ROS and
the PID controller subscribes and publishes the following topic names. The setpoint, state,
and control_effort topic names are default and can be changed in a standard way through
ROS techniques such as remapping and namespaces, or in a pid package specific way
through controller parameters.

(1) setpoint, the controller subscribes to the topic and reads the std msgs/Float64
message. The message data element contains the expected value of the state measurement
of the controlled process.

(2) state, the controller subscribes to this topic and reads the std msgs/float64
message. The message data element contains the current value of the controlled robot
joint property. The controller publishes std msgs/float64 messages on the control effort
topic each time it receives a message from the state topic.

(3) control_effort: The control effort message data element contains the control
applied to the process, driving the state/data to equal the setpoint/data.

(4) pid_enable: The controller subscribes to this topic and reads std msgs/Bool
messages. If this value is false, the controller stops publishing control effort and keeps
the error credit at 0. A real value re-enables the controller. If you have multiple PID
controllers, the name of this topic can be changed in the startup file.

(5) pid_debug: Publish an array that is useful for debugging or tuning. The array
contains five numbers: error, control effort, proportional contribution, integral
contribution, and derived contribution.

Closed-loop feedback control of the robot is performed using the system preset
parameters. The real joint information of the robot is sent from the 2001 port under the
robot ip, which is encapsulated as /state information for the PID system to subscribe.
Making the value of pid enable True, the closed-loop control block diagram of this

system is shown in Figure 4-9.
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Figure 4-9 Robot system control block diagram
In this paper, there are two basic controllers that are affected by the PID parameters:
the joint velocity controller and the joint position controller. Taking the joint position
controller as an example, the comparison graph before and after the PID parameter

adjustment is shown in Figure 4-10. Before adjusting the PID controller, the robot arm

cannot reach the set pose.

5 frobot1/joint_states/position]1]
frobotl/joint_states/pasition|2)]
4 /robotl/joint_states/position| 3]
frobot1/joint_states/position{4]
3 /robot1/joint_states/position|5|
frobotl/joint_states/position6]
—— [robot1/joint_states/position|7]
2
e e
position A B [ e S o } N
/rad "
-1
-2
0 5 10 time/s 15 20 25 30

Figure 4-10 Joint position before PID modulation

Before adjusting the PID controller, the rotation angle of joint 2 often exceeded the
given range, and its maximum value even exceeded the rotation angle of joint 1. The joint
positions after adjusting the PID controller are shown in Figure 4-11, and the performance
of the robot arm is significantly improved. The adjusted controller can meet the

requirements of this paper and make the robot arm achieve the set pose during the

simulation.
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Figure 4-11 Joint position after PID modulation

4.4.2 ROS output information utilization

The action communication format is characterized by a feedback section, which
provides feedback from the robot on joint information, joint force information, task
execution messages, and so on. After sending a task goal to the physical robot, the robot
will provide real-time feedback on the task execution, and the user can cancel the task

during execution and return the completion flag when the task is completed.

Goal

Cancel

\

. . Status )
Action Client < Action Server

Result

A

Feedback

A

Figure 4-12 action communication principle
The controller used by the robot in the Movelt scenario is the server side of an action
called Follow Joint Trajactory. The user needs to write the client side of the action to
receive the output information, which contains the timestamp, acceleration, velocity, and

rotation angle of each joint.
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positions: [-0.2439490483683039, -1.6924789272607375, 1.4083357728349053
, 0.14208142178291583, 1.7872165027572922, -1.4251861213529284, -1.4683838484541
03]

velocities: [-0.02450002794125306, -0.169977219772
884, 0.014269368242662447, 0.17949180186394836, -0.1431327
4430754418]

accelerations: [0.048598173499140244, 0.3371662447581171, -0.28056082
693407, -0,028304671131104193, -0.3560393379784623, 0.2839176576311521, 0.292
2687227757]

effort: []

82287, 0.1414404606859
5673007148, -0.1474711

48
5

2

5
5

Figure 4-13 ROS system output information

By extracting the position information of the joints and using C++ string splicing
functions to encapsulate the planning information, the robot will encapsulate the
information into the format of script functions that can be recognized by the robot's own
system, such as movej (move the joint), move pose (move to the specified position), etc.
When the robot finishes executing the script functions, it will send a 'script finish'
message to the host computer, when the host computer receives this signal, it will send
'excuteOpen' or 'executeClose' string to the Raspberry Pi. Raspberry Pi is in the training
state, the program will enter the 'if' statement to execute the corresponding action of
opening or closing the gripper, before executing the opening or closing action, it will

display the message of about to open or about to close on the terminal.

pi@raspberrypi: vi TControl.py
pi@raspberrypi: python3 TControl.py
server waiting...
executeC

close both end-effector
server waiting...
executel

open both end-effector
server waiting...
executeC

close both end-effector
server waiting...
executel

open both end-effector
server waiting...
executeC

close both end-effector
server waiting...
executel

open both end-effector
Eeruer waiting...

Figure 4-14 Raspberry Pi terminal prompt message
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The robot script functions start with <start> as the program start flag, /LP and /RP
are used to distinguish between left and right arm programs, each script function ends
with ';', and the script program ends with <end> as the program end flag. The main robot
scripting functions used in this system are movej, movej pose, sync_flag, and sleep
functions, which are described next.

(1) movej, which moves to the specified joint position by means of joint angle motion,
requires the user to give the rotation angle of each joint.

(2) movej pose, specifies the position and pose of the end-effector, moving to the
specified position pose.

(3) sync_flag, the program will continue to execute when both the left and right arm
scripts move to the same sync_flag.

(4)  sleep, the delay function.

The robot supports the following data types.

(1) Arithmetic type: The system built-in arithmetic type includes integer (int) and
floating point (float) data, which are represented in the system internal 32bit memory
space. The system automatically infers the type of arithmetic type constants (based on
whether the constants contain decimal points or not), and the system variables are defined
at the time of definition to determine the type based on the initialization content.

(2) String type string: The system only supports constants of string type, such as
"siasun robot", and the string ends with \0'.

(3) Pose: A pose is a float vector of length 6. The system supports constants and
variables of the pose type.

(4) Array type: The system supports two types of built-in array types, int and float.

Users can also program the robot using common while and break functions,

assignment expressions, function call expressions, etc.
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Figure 4-15 Example of a script program

The real robot will act as a socket server after powering up to accept the encoded
string commands sent to it by the user through the socket client, and the robot will also
distribute real joint status information through port 2001 at a frequency of 10hz. By
writing the Socket client program, this program is also the action client program used to
receive waypoints from the virtual environment path planning, which can achieve the
function of sending waypoints to the real robot. The real robot will automatically create
a .spf file to store and immediately execute this script program after receiving the script
function format string.

After connecting to port 2001 under the ip address of the built-in system of the robot,
the real joint information can be read and fed back to the simulation system to update the
position of the robot arm in the simulation system. Comparing the rotation angle
information of the real joints in the demonstrator with the joint information of the last
waypoint in the sent script function, the angles of a total of 14 joints of the two arms are
exactly the same. The motion trajectory of the real robot is also exactly the same as the

motion plan of the simulated robot.

4.4.3 Block diagram of the robot control system

The system hardware composition of the robot in this paper includes a depth camera,
a host computer, a Raspberry Pi, a gripper, and a two-arm robot body. The depth camera
is responsible for the image information acquisition, the host computer controls the
movement of the robot arm, the Raspberry Pi controls the opening and closing of the

gripper, and the dual-arm robot and the gripper are responsible for the execution of the
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Figure 4-16 Hardware system block diagram

The software control flow of this paper is that the color image information and depth
image information captured by the depth camera are processed by Tensorflow to derive
object category information and 3D coordinate information exported as "/LeftObject"
and "/ RightObject" topics, the path planning program subscribes to the above two topics
as the information input for the upper computer control system Movelt path planning,
adds obstacles to the planning scene, the robot model file uses the exported SRDF
parameter file for path planning and other necessary information, the solver planning
process and outputs the waypoint results to the two-arm The solver outputs the waypoint
results to the two-armed robot using python string processing functions to encapsulate
the waypoint information into the robot scripting language. The real joint information is
then encapsulated into the ROS topic '/state', and the PID control node of the host control

system is subscribed to the '/state' topic to form closed-loop control.
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Figure 4-17 Software system block diagram

4.5 Summary of this chapter

This chapter simulates the motion of a real robot and its operating environment by
building a robot model urdf file, adding collision objects using Movelt's function
interface, and limiting the planning space. The PID controller is added to the ROS system,
the topic of subscribing visual information to integrate the hand-eye system, and the joint
rotation data information output from the ROS is transformed into the format of script
functions recognizable by the robot through python/C++ string processing related
functions, and the processed strings are sent to the robot through socket network

communication to realize the movement of the physical robot.
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5 Experimental validation of a two-armed collaborative robot

In this chapter, three task scenarios will be set: single-arm motion, clamping and
gripping objects, and collaborative gripping of objects by both arms. A depth camera will
be used to capture image information for input to the host system, and a ROS-controlled

solid robot will be used to test the effectiveness of the two-arm robot hand-eye system.

5.1 Single-arm motion experiment

The output information of ROS converts the waypoint information into the angle
value of each joint, and uses the upper computer to send joint rotation information to the
single arm of the robot via Socket. Since the simulation outputs large joint information,
and the robot used in this paper can accept up to 8192 bytes of string in a single pass, in
order to limit the size of the sending script function, the joint values are sampled at
intervals and then added to the last To limit the size of the sending script function, the
joint values are sampled at intervals, and then the joint values of the last target point are
added to form a new set of joint values. Comparing the joint angle values sent to the robot
(Figure 5-1) with the real joint angle values fed back by the robot (Figure 5-2), the two

trends are basically the same.

— Y51 %152 %153 %54 %P5 - K6 o o T3

Figure 5-1 Sent joint rotation angle curve graph
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Figure 5-2 Real joint rotation angle curve
In order to more visually compare the motion trajectory of the robot in the
simulated and real environment, we use rviz to visualize the motion trajectory of the
single arm of the two-armed robot in the simulated environment and compare it with
the motion of the physical robot.

Figure 5-3 shows the motion trajectory in the rviz simulation environment.

|
rir K7

L 3e_nnk

Figure 5-3 Simulation environment motion planning trajectory

Figure 5-4 shows the motion trajectory of the solid robot.
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Figure 5-4 Motion trajectory of the solid robot

The comparison analysis shows that the motion trajectory of both robots is basically
the same. In the actual test, the motion of the robot in the simulated environment is more
smooth, while the motion of the solid robot has a millisecond pause after reaching a
certain way point, and then moves to the next way point. It is assumed that the reason for

this pause is the response speed of the robot execution program.

5.2 Grabbing experiments

After the gripper is assembled and stabilized by the connector and the robot, the
upper computer and the Raspberry Pi that controls the movement of the gripper are put
under the same WIFI network, and the stepper controller of the gripper and the GPIO of
the Raspberry Pi are connected using a DuPont cable.

1 Bt Hs IR 2R l

Figure 5-5 Raspberry Pi Connections
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The stepper motor controller is connected to the gripper via the stepper motor link

cable as follows.

Figure 5-6 Gripper connection

Use SSH to access Raspberry Pi remotely, open the pin control program on
Raspberry Pi that controls the opening and closing of the gripper, and wait for the action
command to be sent from the host computer. The robot arm is preset to grip the object in
ready attitude, gripping attitude, pouring attitude and recovery attitude, the action of this
part is fixed action, so the robot arm is programmed directly using the script program.

First let the gripper to the top of the object (p1), and then move to the point to be
clamped (p2), at this time the upper computer will receive the 'script finish' by the robot
feedback of the script program execution completed sign bit, the upper computer received
this signal to the Raspberry Pi to send a signal to close the gripper, the gripper to execute
the action. After clamping the object and executing the task action (p3), then put it on the
table and open the gripper, execute the double-arm recovery procedure (p5), and the
double-arm return to the initial position (p6). The schematic diagram of the whole motion

process is shown below.

p6 Vﬁd

Figure 5-7 Schematic diagram of gripper movement

In the actual experimental scenario, the robot successfully gripped cups, water

bottles, milk cartons, and other objects with preset movements. Due to the different
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shapes of the objects, it is necessary to set the closing angle of the gripper artificially in
order to prevent excessive squeezing of the objects, and here a variety of opening and

closing angles are preset as a countermeasure.

5.3 Two-arm collaboration experiment

5.3.1 Real task scenario construction

A coffee cup, which is easily available in life, is used as the recognized object, and
one is placed on the left and right side of the real robot.
Fix the RGB-D camera using a tripod at a distance of 1.2 meters horizontally and 1.25
meters vertically from the center of the base of the dual-arm robot (origin of the base
scale system). Make the whole tabletop within the field of view of the camera, execute
the command in the terminal, move the two cups to the random position, and the double
arms will move to the position waiting for grasping and achieve the object grasping at
50% of the maximum speed respectively. The detection scene of the image information
can be visualized using the rqt tool, and the depth values of the center of the picture and

the center of the bounding box are marked in white numbers in the figure.

Figure 5-8 Visualization interface of vision system

5.3.2 Hand-eye system performance analysis

Since the 3D positioning algorithm used in this paper ignores the shape of the object
itself, the 3D coordinate point of the object positioned is the center of the recognition

bounding box, which is usually not the best grasping point. When the relative position of
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the camera and the captured object changes, the changing relationship between the
positioning point and the best capture point is also changing.

In order to minimize the influence of errors on the experimental results, the grasped
object was placed in an approximate area, the 3D coordinate points of the cup output
from the recording terminal were observed, and the optimal grasping point was calculated
manually. The corresponding parameters in the program were modified to modify the
target point of robot motion to the corrected target point.

The experimental steps are shown in the figure below, first open the path planning
information and waypoint sending program, then use the 'roslaunch' command to open
the launch files of the simulation environment and vision system in turn, and finally run
the planning program of the left and right arms, when both arms are planned successfully,
the waypoint sending program will send the integrated planning When both arms are
successfully planned, the waypoint sending program will send the integrated planning
information to the physical robot, and the gripper will execute the opening and closing

action when the joint moves to the specified position.
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Figure 5-9 Flow chart of program operation

N

The vision program uses the ROS INFO function to publish the real-time 3D

coordinate points of the left and right cups for user observation in real time. The output

information is the 3D coordinate points of the cups under the camera coordinate system

and the 3D coordinate points translated to the robot base coordinate system, both in m.

The terminal output information is shown in Figure 5-10.
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Figure 5-10 Object 3D coordinate information

The planning program will output a success flag after successful planning, and fail

to output fail and plan again. The reason for planning failure is that the solution cannot

be found, and the terminal will prompt the user to move the cup until the planning is

successful or the user terminates (ctrl+c), then the robot will perform the specified task

after sending the processed waypomts to the robot via socket.
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Replanning: yes
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an instance of 'std::runtime_error'
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Figure 5-11 Path planning terminal operation information

Use Rviz to visualize the planned path process of the left and right arms from the

initial pose to the point to be clamped, as shown in the following figure.
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Figure 5-12 Left and right arm trajectory diagram

The motion path of the robot is shown in the following figure. Firstly, the dual-arm
robot moves from the initial position to position 1 ready for grasping, and its trajectory
is consistent with the planned trajectory in the above figure, and the latter part is to
execute the preset fixed action, and the dual-arm robot adjusts the gripper attitude, and
then moves to the point to be grasped position 2, and then grasps the cup and executes
the pouring action (position 3, 4). Finally, the cup is put down and the initial posture is

restored (position 5, 6).

Figure 5-13 Two-arm collaborative water pouring experiment
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In 20 experiments, grasping the cup to achieve the pouring action a total of 16 times
successfully, of which 4 experiments failed mainly caused by errors in visual positioning,
record the terminal output values of XYZ coordinate points in 20 experiments, assuming
that points B and C are the geometric center of the cup of the object being clamped, and
points A and D are the ideal best clamping points, if the best clamping point and the origin
of the coordinate system of the end gripper coincide, it is possible to obtain the ideal
clamping effect. In the actual commissioning, the three-dimensional coordinate points of

A and B, C and D have the following relationship (unit cm).

|xa — zp| = |xc —xp|=5

Ya — Y — Yo — YD

ZA— Rp— Rc — Zp

The four points A, B, C and D are shown schematically in space with the gripper
and the cup as follows.

A— ﬂ
Eep3ic ERFE

Figure 5-14 Schematic diagram of the best clamping point

The actual running position of the gripper was measured in 20 experiments, and
the difference between the ideal gripping position and the ideal gripping position was
obtained in the following error statistics graph. In the actual measurement, the 2nd, 7th,
16th and 17th gripper pressed to the edge of the cup causing the clamping failure, and
the analysis of the graph below shows that the cause of this phenomenon is the offset of

the y coordinate.
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Figure 5-15 Verification point error absolute value

In order to reduce the positioning error, it is necessary to obtain the grasped object
morphology and correct the optimal grasping point according to the object morphology.
The morphology of the object can be written into the hand-eye system in advance by
means of 3D modeling, or the parameters of the object to be grasped can be measured
manually in advance, and the grasping point can be corrected by algorithms. Another
common method is to use the pcl point cloud library to obtain the point cloud information
of the object directly®!! However, due to the high requirements of pcl on the upper

processor and camera transmission speed, this system does not use the pcl library.

5.4 Summary of this chapter

This chapter sets up several real environment task environments to test the
effectiveness of the hand-eye system, analyzes the advantages and disadvantages of this
hand-eye system as well as the causes of task failure lie in the errors of visual localization,

and proposes various feasible solutions.
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6 Conclusion

6.1 Summary and Outlook

There are the following deficiencies in the visual system.
(1) Since this paper uses the coordinate value of the center of the bounding box as the 3D
coordinate point of the object, but this point is not the best grasping point, although the
impact of the error is reduced by experimental debugging later, it needs to be modified
again if the grasped object is replaced.
(2) There is no design for light sources, and experiments show that light sources have a
great influence on the correct recognition rate.
(3) The neural network model structure can be further optimized.

There are the following deficiencies in the intelligent control system.

(1) The attitude of the end-effector of the present system is a preset attitude, and the

automatic generation of the end attitude is not possible.
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The control lacks real time and is executed once the object coordinate point is

collected. If the object is moved, the robot arm will move to the previous 3D

coordinate point of the object instead of the current coordinate point.

Based on the above deficiencies, the following improvements are proposed.

D)
(2)
(3
(4)

(5)

(6)

The best grip point is corrected by the method of PCL point cloud library.
Design light sources to improve the correct recognition rate.

Use other neural network models to improve the correct recognition rate.

Add obstacle information about non-task objects captured by vision to Movelt
scene planning.

Add deep learning models to automatically generate grasping poses based on
object point cloud information.

Use higher performance computers and optimize the code data structure to

improve the real-time performance of the system.

6.2 Social and economic analysis

The two-arm robot hand-eye system in this paper can be used in a variety of

commercial scenarios, such as coffee making, tea making, wine pouring, etc. Businesses

such as cafes and bars can purchase similar robotic systems for service, although the

performance of the current system is not enough to replace human labor and the degree

of intelligence is very limited, but such robots can be used as a point of attraction to the

public and bring commercial value. If the vision system can be optimized, this system

can also be used in industrial scenarios.

In this paper, the two-armed robot is provided by the laboratory, the gripper,

Raspberry Pi, and depth camera are acquired later, and the performance of Raspberry Pi

can be used in more scenarios. The gripper can pick up a wide range of objects, and the

depth camera is also used for the hundred dollar camera, which is very economical and

scalable.
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Appendix A Translation of English Literature

SSD: Single Detector

Abstract: We propose a method for detecting objects in images using a single deep neural network.
Our method, named SSD, discretizes the output space of bounding boxes into a set of default boxes
that have different aspect ratios and sizes at each feature map location. During prediction, the network
generates scores for each object class present in each default box, and adjusts the boxes to better match
the object shape. In addition, the network combines predictions from multiple feature maps with
different resolutions to accommodate the processing of objects of various sizes. Our SSD model is
simple compared to approaches that require a regional proposal because it completely eliminates the
proposal generation and subsequent pixel or feature resampling stages, and encapsulates all
computations in a single network. Experimental results on the PASCALVOC, MS COCO, and
ILSVRC datasets confirm that SSD has comparable accuracy and is faster than methods using
additional region proposals, while providing a unified framework for training and inference.
Compared with other single-stage methods, SSD has better accuracy, even with smaller input image
size. For VOC2007, at 300%300 input, SSD achieves 72.1% mAP at 58FPS on Nvidia Titan X and
75.1% mAP at 500x500 input SSD, outperforming similar prior art Faster R-CNN models. Code link:
https://github.com/weiliu89/caffe/tree/ssd.

Keywords: real-time object detection; convolutional neural network

1 Introduction

Currently, existing object detection systems are variations of the following approaches: assuming
bounding boxes, resampling pixels or features for each box, and applying high-quality classifiers.
After the selective search [1] approach, Faster R-CNN [2] achieved leading results in PASCAL VOC,
MSCOCO and ILSVRC detection, and this process became a milestone in the field of detection with
deeper features, as described in [3]. Although accurate, these methods are too computationally

intensive for embedded systems and too slow for real-time or near real-time applications, even for
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high-end hardware. The detection speed of these methods is usually measured in frames per second
(FPS), with high precision detectors (based on Faster R-CNN) running at as fast as 7 frames per second
(FPS). There have been extensive attempts to build faster detectors by studying each stage of the
detection process (see related work in Section 4), but so far the significant increase in speed has only
come at the cost of a significant decrease in detection accuracy.

This paper presents the first deep network-based object detector that does not resample pixels or
features assumed by bounding boxes, but is as accurate as this approach. This results in a significant
improvement in the speed of high accuracy detection (72.1% mAP at 58 FPS, 73.2% mAP at 7 FPS
for Faster R-CNN, 63.4% mAP at 45 FPS for YOLO) in the VOC2007 test. The fundamental
improvement in speed comes from the elimination of the bounding box proposal and the subsequent
pixel or feature resampling phase. This is not the first paper to do so (cf [4,5]), but by adding a series
of improvements, we managed to improve the accuracy of previous attempts. Our improvements
include using separate predictors (filters) with different aspect ratios for detection, predicting object
classes and offsets in the bounding box, and applying these filters to multiple feature maps later in the
network in order to perform multi-scale detection. With these modifications, we can achieve high
accuracy detection using relatively low resolution inputs, further increasing the processing speed.
Although these contributions may seem small independently, we note that the resulting system
improves the accuracy of high-speed detection of PASCAL VOC from 63.4% mAP for YOLO to 72.1%
mAP for our proposed network. this is a large improvement in detection accuracy compared to recent
work, and excellent work on residual networks [3]. In addition, the significant increase in the speed
of high-quality detection can broaden the range of useful uses of computer vision.

To summarize our contribution as follows.

- We cite SSD, a single detector for multiple classes, which is faster and much more accurate
than the single detector of previous techniques (YOLO), and in fact as accurate as slower techniques
using regionproposal, pooling (including Faster RCNN)

- The core of the SSD method uses a small convolutional filter to predict the class scores and
position offsets of a fixed set of default bounding boxes on the feature map.

- To achieve high detection accuracy, we generate predictions at different scales from feature
maps at different scales, and separate the predictions explicitly by aspect ratio.

- In summary, these design features yield simple end-to-end training and high accuracy, further
improving the trade-off between speed and accuracy, even with relatively low-resolution image input.

- The experiments include evaluation of model time consumption and accuracy analysis on
PASCAL VOC, MS COCO and ILSVRC for different input sizes, and comparison with a range of

state-of-the-art methods.
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2 Single Detector (SSD)
This section presents our proposed SSD detection architecture (Section 2.1) and the associated

training method (Section 2.2). After that, Section 3 presents model details and experimental results

for a specific dataset.
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(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map
Figure 1 SSD architecture

(a) SSD requires only the input image of each object and the true label frame during training. For
convolution processing, we evaluate small sets (e.g., 4) of default boxes with different aspect ratios at
each position in several feature maps with different scales (e.g., 8 x 8§ and 4 x 4 in (b) and (c)). For
each default box, we predict the shape bias for all object classes ((c 1,¢c2, ..., cp))., cp)) for all object
classes with shape bias and confidence. During training, we first match these default boxes to the true
labeled boxes. For example, two default boxes are matched to cats and dogs, these boxes are positive
and the rest are considered negative. The model loss is a weighted sum between the position loss (e.g.,
smoothed L1 [6]) and the confidence loss (e.g., Softmax).

2.1 Models

The SSD approach is based on a feed-forward convolutional network, which generates a fixed
size set of bounding boxes and a score of object classes in the boxes, followed by a non-maximizing
suppression step to produce the final detection. The early network is based on a standard architecture
for high-quality image classification (truncated before any classification layer), which we refer to as
the base network (we used the VGG-16 network as the base in our experiments, and other networks
should also produce good results). Then, we added auxiliary structures to the network, yielding
detections with the following main features.

Multi-scale feature map detection: We add convolutional feature layers to the end of the truncated
base network. These layers are gradually reduced in size to obtain predictions for multi-scale detection.
The convolutional model of detection is different for each feature layer (see Overfeat [4] and YOLO

[5] for operating on a single-scale feature map).
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Figure 2 Comparison between two single detection models: SSD and YOLO [5]

Our SSD model adds several feature layers at the end of the base network, which predict the
offset of different scales and aspect ratios to the default frame and its associated confidence. The
accuracy of the SSD with 300x300 input size in the VOC2007 test is significantly better than that of
the YOLO with 448x448 inputs, and also improves the runtime speed, although the YOLO network
is faster than VGG16.

Convolutional predictors for detection: Each added feature layer (or optionally an existing
feature layer of the underlying network) can use a set of convolutional filters to generate a fixed set
of predictions. These are noted at the top of the SSD network architecture in Figure 2. For a feature
layer of size m x n with p channels, a 3 x 3 x p convolution kernel convolution operation is used to
generate the fraction of categories or coordinate offsets relative to the default box. An output value is
generated at each location of size m x n where the convolution kernel operation is applied. The
bounding box offset output value is measured relative to the default box, and the default box position
is relative to the feature map (see YOLO [5] for an architecture that uses a fully connected layer in
the middle instead of the convolution filter used for this step).

Default boxes and aspect ratio: We associate a set of default bounding boxes with each feature
map cell of the top-level network. The default boxes perform convolution operations on the feature
map so that the position of each box instance is fixed with respect to its corresponding cell. In each
feature map cell, we predict the offset relative to the default box shape in the cell, as well as the per-
class fraction of instances in each box. Specifically, for each of the k boxes at a given position, we
compute the c-class score and four offsets relative to the original default box. This results in a total of
(c+4)k filters for each position in the feature map, producing (c+4)kmn outputs for an mxn feature
map. For a description of the default boxes, see Fig. 1. Our default boxes are similar to the anchor
boxes used in Faster R-CNN [2], but we apply them to feature maps of different resolutions. By using

different default box shapes in multiple feature maps, the space of possible output box shapes can be
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efficiently discretized.
2.2 Training

The key difference between training SSD and training typical classifiers using region proposal,
pooling is that the true label information needs to be assigned to a particular output in a fixed set of
detector outputs.The regionproposal phase of Faster R-CNN [2] and MultiBox [7], the YOLO [5] The
training phase of YOLO [5] also requires a similar label. Once this designation is determined, the loss
function and backpropagation are applied end-to-end. Training also involves the selection of the
default set of boxes and scales used for detection, as well as hard negative mining and data
augmentation strategies.

Matching strategy: During training, we need to establish the correspondence between the real
labels and the default boxes. Note that for each real label box, we select from the default boxes, which
vary with position, aspect ratio and scale. At the start, we match each real label box with the best
jaccard overlap of the default box. This is the matching method used in the original MultiBox [7],
which ensures that each real label box has a matching default box. Unlike MultiBox, matching default
boxes with real label jaccard overlap above a threshold (0.5). Adding these matches simplifies the
learning problem: it allows the network to predict with high confidence when there are multiple
overlapping default boxes, instead of requiring it to choose the one with the largest overlap.

Training: SSD training from MultiBox[7,8], but extended to handle multiple object categories.
with denotes the ith default box matching the jth true labeled box of category p. Conversely, according
to the matching strategy above, we have 1, meaning that there can be more than one default box
matching the jth true labeled box. The overall objective loss function is a weighted sum of position

loss (loc) and confidence loss (conf).

1
L(z,c,l,g) = F(Lcoﬂf(m,c) + aLioc(z,1, 9)) (1)

where N is the number of matched default boxes, and the position loss is the smoothed L1 loss
between the parameters of the predicted box (1) and the true labeled value box (g) [6]. Similar to Faster
R-CNN [2], we regress the center of the bounding box and its width and height offsets. Our confidence
loss is a cross-validation of the softmax loss on the multiclass confidence (c) and the weight term a
set to 1.

Select the default box scale and aspect ratio: Most convolutional networks reduce the size of the
feature map by deepening the number of layers. This not only reduces computational and storage
consumption, but also provides some degree of translation and size invariance. To handle different
object sizes, some approaches [4,9] suggest converting images to different sizes, then processing each

size individually, and then combining the results. However, by using feature maps from several
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different layers in a single network for prediction, we can obtain the same results while also sharing
parameters across all object scales. Previous studies [10,11] have shown that using feature maps from
lower layers can improve the quality of semantic segmentation, since the lower layers capture finer
details of the input objects. Similarly, [12] showed that adding global text downsampled from higher-
level feature maps can help smooth the segmentation results. Inspired by these approaches, we use
both low-level and high-level feature maps for detection prediction. Figure 1 illustrates two example
feature maps (8 x 8 and 4 x 4) used in the framework, although in practice, we can use more feature
maps with relatively small computational overhead.

It is known that different levels of feature maps in the network have different (empirical)
receptive field sizes [13]. Fortunately, within the SSD framework, the default box does not need to
correspond to the actual perceptual field at each level. We can design tiling so that location-specific
feature maps, learned in response to specific regions of the image and at specific scales of the object.
Suppose we want to use m feature maps to make predictions. The scale of the default box for each
feature map is calculated as follows.

Smax — Smin
Sk = Smin + ﬁ(k — 1), k [ [l,m] (2)

where smin is 0.2 and smax is 0.95, meaning that the lowest layer has a scale of 0.2, the highest
layer has a scale of 0.95, and all layers in between are regularly spaced. We apply different aspect
ratios to the default boxes, denoted as are{1,2,3,1/2,1/3}. We can calculate the width and height of
each default box. For an aspect ratio of 1, we also add a default box scaled to 1, so that there are 6
default boxes for each feature map position. We set the center of each default box to be, where is the
size of the kth square feature map, and then intercept the default box coordinates so that they are
always within [0, 1]. In fact, the distribution of default boxes can be designed to best fit a particular
data set.

By combining the predictions of all default boxes for many feature maps at all positions with
different sizes and aspect ratios, we have a diverse set of predictions that cover a variety of input
object sizes and shapes. For example, in Figure 1, the dog is matched to the default box in the 4x4
feature map, but not to any of the default boxes in the 8x8 feature map. This is because those boxes
have different scales but do not match the dog's box, and are therefore considered negative samples
during training.

Hard negative mining: After the matching step, most of the default frames are negative samples,
especially when the number of possible default frames is large. This leads to a significant imbalance

of positive and negative samples during training. Instead of using all negative samples, we sorted each
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default box using its highest confidence level and selected the first ones so that the ratio between
positive and negative samples was at most 3:1. We find that this leads to faster optimization and more
stable training.

Data augmentation: In order to make the model more robust to various input object sizes and
shapes, each training image is randomly sampled by one of the following options.

- Use the entire original input image

- Sampling a fragment, so that the object has a minimum jaccard overlap of 0.1, 0.3, 0.5, 0.7 or
0.9.

- Randomly sampling a clip

The size of each sampled segment is [0.1,1] of the original image size, and the aspect ratio is
between 1/2 and 2. If the center of the true label frame is within the sampled slice, the overlap is
preserved. After the above sampling steps, each sampling slice was resized to a fixed size and flipped

horizontally with a probability of 0.5.

3 Experimental results
Base network: our experiments are based on the VGG16 [14] network, pre-trained in the
ILSVRC CLS-LOC dataset [15]. Similar to DeepLab-LargeFOV [16], we transformed fc6 and fc7
into convolutional layers, sampled parameters from fc6 and fc7, changed pool5 from 2x2-s2 to 3%3-
sl, and used atrous algorithm to fill the "holes". We remove all dropout and fc8 layers, and use SGD
to fine-tune this model with initial learning rate , 0.9 momentum, 0.0005 weight decay, and batch size
32. The learning rate decay strategy is slightly different for each dataset, we will describe the details
later. All training and testing code is written in the caffe framework, open source at
https://github.com/weiliu89/caffe/tree/ssd.
3.1 PASCAL VOC2007
On this dataset, we compared Fast R-CNN [6] and Faster R-CNN [2]. All methods use the same
training data and pre-trained VGG16 network. In particular, we trained on VOC2007train val and
VOC2012 train val (16551images), and tested on VOC2007 (4952images).

Figure 2 shows the architecture details of the SSD300 model. We use conv4 3, conv7 (fc7),
conv8 2, conv9 2, convl0 2 and poolll to predict the position and confidence (for the SSD500
model, convll 2 is added additionally for prediction), using the "xavier" method The parameters of
all newly added convolutional layers are initialized using the "xavier" method [18]. Due to the large
size of conv4 3 (38x38), we only place three default boxes on it: a 0.1 scale box and additional boxes
with aspect ratios of 1/2 and 2. For all other layers, we set 6 default boxes, as in Section 2.2. As pointed

out in [12], since conv4 3 has a different feature scale compared to the other layers, we use the L2
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regularization technique introduced in [12] to scale the feature parametrization to 20 at each position
in the feature map and learn the scale during backpropagation. We use the learning rate for 40k
iterations, then decay it to , and continue training for another 20k iterations. Table 1 shows that our
SSD300 model is already more accurate than Fast R-CNN. When training the SSD with a larger
500x500 input image, the results are even more accurate, surprisingly exceeding even the Faster R-
CNN by 1.9% mAP.

To understand the performance of our two SSD models in more detail, we used the detection
analysis tool from [19]. Figure 3 shows that SSD can detect (large, white areas) various object classes
with high quality. It is correct for most of the high confidence detections. The recall is around 85-90%,
and much higher than the "weak" (0.1 jaccard overlap) criterion. Compared to R-CNN [20], SSD has
less localization error, suggesting that SSD can better localize objects because it directly regresses
object shape and classifies object classes instead of using two decoupling steps. However, SSD has
more confusion for similar object classes (especially animals), partly because multiple classes share
positions.

fidiiod | wAv [iamo. ik ‘bird. boer Dol e e o iiic cow bl g Dot uibiki: peson plkot dheep: sofk i b

s (/732|765 790 709 655 S2.1 831 847 86.4 320 $19 65 845 846 775 707 K8 736 739 830 726

ssp300 |72.1(75.2 79.8 70.5 62.5 41.3 81.1 80.8 86.4 51.5 74.3 72.3 83.5 84.6 80.6 74.5 46.0 71.4 73.8 83.0 69.1
sspso0 |75.1[79.8 79.5 74.5 63.4 51.9 84.9 85.6 87.2 56.6 80.1 70.0 85.4 84.9 80.9 78.2 49.0 78.4 72.4 84.6 75.5

Table 1 PASCAL VOC2007 test set detection results

The minimum input image size is 600 for Fast and Faster R-CNNSs, and the other settings are the
same for both SSD models except for the input image size (300*300 and 500*500). It is obvious that
the larger input size gives better results.

Figure 4 shows that SSD is very sensitive to the bounding box size. In other words, it has worse
performance for smaller objects than for larger objects. This is not surprising, since small objects may
not retain any information at the topmost level. Increasing the input size (e.g., from 300%300 to
500%500) can help improve detection of small objects, but there is still much room for improvement.
On the positive side, we can clearly see that SSD performs well on large objects. It is also very robust
to different object aspect ratios, as we use default boxes with various aspect ratios for each feature
map position.

3.2 Model analysis

To better understand SSD, we also performed several human-controlled experiments to check

how each component affects the final performance. For all of the following experiments, we used the

exact same setup and input size (300%300), except for variations in components.
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SSD300
more data augmentation? v Vv v Vv
use conv4 3? | v/ v v Vv
include {3,2} box? | ¢ ¢ v Vv
include {5,3} box? | v ¢ 4
use atrous? | ¢/ v v Vv
VOC2007 test mAP | 654 68.1 692 712 714 7

4
4
v
4
v
2.1

Table 2 Effect of different choices and components on SSD performance

The key data augmentation Fast and Faster R-CNNs are trained using the original images and
horizontally flipped (0.5 probability) images. We use a broader sampling strategy, similar to YOLO
[5], but it uses photometric distortions that we did not use. Table 2 shows that we can improve mAP
by 6.7% with this sampling strategy. we do not know how much our sampling strategy will improve
Fast and Faster R-CNNs, but it may not have much effect because they use pooling during

classification, which is more robust than artificial settings.
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Figure 3 Visualization of SSD 500 on the VOC2007 test set for animal vehicle and furniture

performance

The first row shows the cumulative fraction of correct detections (Cor), false positives due to
poor localization (Loc), confusion with similar categories (Sim), other categories (Oth), or
background (BG). The solid red line reflects the change in recall for the "strong" criterion (0.5 jaccard
overlap) as the number of tests increases. The red dashed line uses the "weak" criterion (0.1 jaccard

overlap). The bottom row shows the distribution of top-ranked false positive types.
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Fig. 4: Sensitivity and impact of different object characteristics on VOC2007 test
set. Each plot shows the normalized AP [19] with standard error bars (red). Black
dashed lines indicate overall normalized AP. The plot on the left shows the effects of
BBox Area per category, and the right plot shows the effect of Aspect Ratio. Key: BBox
Area: XS=extra-small; S=small; M=medium; L=large; XL =extra-large. Aspect Ratio:
XT=extra-tall/narrow; T=tall; M=medium; W=wide; XW =extra-wide.

More feature map boosting, Inspired by many semantic segmentation works [10,11,12], we also
use the underlying feature map to predict the bounding box output. We compare the model predicted
using conv4 3 with the model without it. From Table 2, we can see that by adding conv4 3 for
prediction, it has significantly better results (72.1% vs. 68.1%). This is also in line with our intuition
that conv4 3 can capture better granularity of objects, especially fine details.

More default box shapes work better, as described in Section 2.2, where by default, 6 default
boxes are used per position. If we remove the boxes with 1/3 and 3 aspect ratios, the performance
drops by 0.9%. By further removing the boxes with 1/2 and 2 aspect ratios, performance drops by
another 2%. Using multiple default box shapes seems to make the network prediction task easier.

Atrous algorithm is better and faster, as described in Section 3, we used the atrous version of
VGG16, following DeepLabLargeFOV [16]. If we use the full VGG16, keeping pool5 with 2x2-s2,
and without the acquisition parameters from fc6 and fc7, adding conv5 3, the result is slightly worse

(0.7%), while the speed is slowed down by about 50%.
3.3 PASCAL VOC2012

Using the same setup as VOC2007, this time, the model was trained with the training validation
set of VOC2012, the training validation set of VOC2007, the test set (21503 images), and tested on
the test set of VOC2012 (10991 images). With more training data, the model is trained at a learning
rate of 60K iterations, and then reduced to a further 20K iterations.

Method |[mAP| acro bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train  tv

Fast [6] [68.4(82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2
Faster [2] [70.4|84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5
YOLO [5]|57.9(77.0 67.2 57.7 38.3 22.7 68.3 55.9 81.4 36.2 60.8 48.5 77.2 72.3 71.3 63.5 28.9 52.2 54.8 73.9 50.8
SSD300 [70.3|84.2 76.3 69.6 53.2 40.8 78.5 73.6 88.0 50.5 73.5 61.7 85.8 80.6 81.2 77.5 44.3 73.2 66.7 81.1 65.8
SSD500 | 73.1|84.9 82.6 74.4 55.8 50.0 80.3 78.9 88.8 53.7 76.8 59.4 87.6 83.7 82.6 81.4 47.2 75.5 65.6 84.3 68.1

Table 3: PASCAL VOC2012 test detection results. Fast and Faster R-CNN use
images with minimum dimension 600, while the image size for YOLO is 448 x 448.

Table 3 shows the results for the SSD300 and SSD500 models, and we see the same performance
trends as we observed in the VOC2007 test. Our SSD300 has outperformed Fast R-CNN, and is very
close to Faster R-CNN (only 0.1% difference). By increasing the training and test image size to
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500%500, we outperform Faster R-CNN by 2.7%. Compared to YOLO, SSD is significantly better,
probably due to the use of convolutional default frames from multiple feature maps and the

matching strategy during training.
3.4 MSCOCO

To further validate the SSD architecture, we trained our SSD300 and SSD500 models on the MS
COCO dataset. Since the objects in COCO tend to be small, we use smaller default boxes for all layers.
We follow the strategy mentioned in Section 2.2, but now our smallest default frame has a scaling of
0.1 instead of 0.2, and the scaling of the default frame on conv4 3 is 0.07 (e.g., corresponding to 21
pixels for a 300x300 image).

We use trainval35k [21] to train our model. Since COCO has more object classes, the gradient is
unstable at the beginning. We first trained the model with 4K iterations at a learning rate of 8x,
followed by 140K iterations at the learning rate, then 60K iterations at the learning rate, and 40K
iterations at the learning rate. Table 4 shows the results on test-dev2015. Similar to what we observed
on the PASCAL VOC dataset, SSD300 7 mAP@0.5 1 mAP@][0.5:0.95] outperforms Fast R-CNN,
and is close to Faster R-CNN at mAP @ [0.5:0.95]. However, mAP@0.5 % ¥&, we speculate that this
is because the image size is too small, which prevents the model from pinpointing many small objects.
By increasing the image size to 500 x 500, our SSD500 outperforms the Faster R-CNN in both criteria.
in addition, our SSD500 model is also better than ION [21], which is a multi-size version of the Fast
R-CNN, using a recurrent network to explicitly model the context. In Figure 5, we show some

detection examples using the SSD500 model in the MSCOCO test-dev.

Average Precision
Method data 05 075 05095
Fast R-CNN [6] train 359 - 19.7
Faster R-CNN [2] train 42.1 - 215
Faster R-CNN [2] trainval 42.7 - 21.9
ION [21] train 420 23.0 23.0
SSD300 trainval35k | 38.0  20.5 20.8
SSD500 trainval35k | 43.7 24.7 24.4

Table 4: MS COCO test-dev2015 detection results.

3.5 ILSVRC Preliminary Results

We applied the same network architecture we used for MS COCO to the ILSVRC DET dataset
[15]. We used the ILSVRC2014 DET train and vall to train the SSD300 model, as used in [20]. We
first train the model with 4K iterations at a learning rate of 8%, then train the model with 320k iterations
at the learning rate, then train the model with 100k iterations and continue with 60k iterations. We can
achieve 41.1mAP on the val2 set [20]. Once again, it verifies that SSD is a general framework for
high-quality real-time detection.

3.6 Reasoning period
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Considering the large number of boxes generated from our method, it is necessary to efficiently
perform non-maximum suppression (nms) during inference. By using a confidence threshold of 0.01,
we can filter out most of the boxes. Then, we use the Thrust CUDA library for sorting, compute the
overlap between all remaining boxes using the GPU, apply nms to each class with a jaccard overlap
of 0.45, and save the first 200 detections for each image. For SSD300 with 20 VOC classes, this step
took about 2.2 ms per image, which is close to the total time spent on all newly added layers.

Table 5 shows the comparison between SSD, Faster R-CNN [2], and YOLO [5].Faster R-CNN
uses an extra prediction layer for region proposal and requires feature downsampling. In contrast, our
SSD500 method outperforms Faster R-CNN in terms of speed and accuracy. It is worth mentioning
that our method SSD300 is the only method that achieves more than 70% mAP in real time. While

Faster YOLO [5] can run at 155 FPS, the accuracy is only almost 20% of the mAP.

Method mAP | FPS | # Boxes
Faster R-CNN [2](VGG16) | 73.2 7 300
Faster R-CNN [2](ZF) 62.1 17 300
YOLO [5] 63.4 | 45 98
Fast YOLO [5] 52.7 | 155 98
SSD300 72.1 58 7308
SSD500 75.1 23 20097

Table 5: Results on Pascal VOC2007 test. SSD300 is the only real-time detection
method that can achieve above 70% mAP. By using a larger input image, SSD500 out-
performs all methods on accuracy while maintaining a close to real-time speed. The
speed of SSD models is measured with batch size of 8.

4 Related Jobs

There are two established methods for object detection in images, one based on sliding windows
and the other on regional proposal classification. Before the advent of convolutional neural networks,
the two methods used for detection, DeformablePart Model (DPM) [22] and selective search [1], were
close in performance. However, after the significant improvements brought by R-CNN [20], which
combines selective search region proposal and post classification based on convolutional networks,
region proposal object detection methods became common.

The original R-CNN methods have been improved in various ways. The first group of methods
improved the quality and speed of post-classification, as it requires classification of thousands of
image crops, which is expensive and time-consuming. spPnet [9] has greatly speeded up the original
R-CNN methods. It introduces a spatial pyramid pooling layer, which is more robust to region size
and scale, and allows the classification layer to reuse feature map features generated at several image
resolutions.Fast R-CNN [6] extends SPPnet so that it can fine-tune all layers end-to-end by
minimizing the loss of confidence and bounding box regression, which was first introduced in

MultiBox [7] for learning objects.
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The second group of approaches uses deep neural networks to improve the quality of proposal
generation. In recent works, such as MultiBox [7,8], selective search of regional proposal based on
low-level image features is replaced by proposal generated directly from a separate deep neural
network. This further improves the detection accuracy, but leads to some complex setups that require
training two neural networks and the dependencies between them.Faster R-CNN [2] replaces the
selective search proposal by a scheme that learns from the region proposal network (RPN), and
introduces the integration of the RPN with the FPN by fine-tuning the shared convolutional layers and
the prediction layers between the two networks The method of integrating RPN with Fast R-CNN by
fine-tuning the shared convolutional layers and the alternation between the prediction layers of both
networks. In this way, the regional proposal pools the mid-level feature maps, and the final
classification step is faster. Our SSD is very similar to the region proposal network (RPN) in the Faster
R-CNN, because we also use fixed (default) frames for prediction, similar to the achor frames in the
RPN. However, instead of using these to pool features and evaluate another classifier, we
simultaneously generate a score for each object class in each box. Thus, our approach avoids the

complexity of merging RPN with Fast R-CNN, and is easier to train and integrate into other tasks.
Another set of methods is directly related to our approach, skipping the proposal step altogether
and directly predicting the bounding boxes and confidence levels for multiple categories. OverFeat [4]
is a deeper version of the sliding window approach, predicting the bounding box directly from each
position of the topmost feature map after knowing the confidence of the underlying object category.
yolo [5] uses the entire topmost feature map to predict the confidence of multiple categories and
bounding boxes (which are shared by these categories). Our SSD method falls into this category
because we do not have a proposal step, but use default boxes. However, our method is more flexible
than existing methods because we can use default boxes with different aspect ratios at each feature
location in multiple feature maps at different scales. If only one default frame is used at each position
of the top-level feature map, our SSD will have an architecture similar to OverFeat [4]; if we use the
entire top-level feature map and add a fully connected layer for prediction instead of our convolutional
predictor, and do not explicitly consider multiple aspect ratios, we can approximate the reproduction

of YOLO [5].

5 Conclusion
This paper presents SSD, a fast single object detector for multiple classes. A key feature of our
model is the use of multi-scale convolutional bounding box outputs attached to multiple feature maps
at the top of the network. This representation allows us to efficiently model the space of possible frame

shapes. We experimentally verify that, given an appropriate training strategy, a larger number of
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carefully selected default bounding boxes yields improved performance. We build SSD models that
differ by at least an order of magnitude in box prediction location, scale, and aspect ratio compared to
existing methods [2,5,7].

We show that given the same VGG-16 infrastructure, SSD outperforms state-of-the-art object
detectors in terms of accuracy and speed. Our SSD500 model significantly outperforms the state-of-
the-art Faster R-CNN [2] in terms of accuracy for PASCAL VOC and MS COCO, and is three times
faster. Our real-time SSD300 model runs at 58 FPS, which is faster than the current real-time YOLO
[5], while having significantly higher quality detection.

In addition to its standalone utility, we believe that our complete and relatively simple SSD
model provides a great building block for larger systems using object detection components. A
promising future direction is to explore it as part of a system using recurrent neural networks for

detecting and tracking objects in video.
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Fig. 5: Detection examples on MS COCO test-dev with SSD500 model. We show
detections with scores higher than 0.6. Each color corresponds to an object category.
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Abstract. We present a method for detecting objects in images using a single deep neural network.
Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes
over dif- ferent aspect ratios and scales per feature map location. At prediction time, the network
generates At prediction time, the network generates scores for the presence of each object cate- gory
in each default box and produces adjustments to the box to better match the object shape, SSD is
simple relative to methods that require object proposals because it completely eliminates proposal
generation and subsequent pixel or feature resampling This makes SSD easy to train and
straightforward to integrate into systems that require a Experimental results on the PASCAL VOC,
COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that uti lize an
additional object proposal step and is much faster, while providing a unified framework for both
training and inference. For 300 x 300 input, SSD achieves 74.3 % mAP on VOC2007 test at 59 FPS
on a Nvidia Titan X and for 512 x 512 input, SSD achieves 76.9 % mAP, outperforming a comparable
state of the art Compared to other single stage methods, SSD has much better accuracy even with a
smaller input image size. Code is available at https:/ /github.com/weiliu89/caffe/ tree/ssd.
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Keywords: Real-time object detection - Convolutional neural network
1 Introduction

Current state-of-the-art object detection systems are variants of the following app- roach:
hypothesize bounding boxes, resample pixels or features This pipeline has prevailed on detection
bench- marks since the Selective Search work [1] through the current leading results on PASCAL
VOC, COCO, and ILSVRC detection all based on Faster R-CNN [2] albeit with deeper features such
as [3]. While accurate, these approaches have been too computationally intensive for embedded
systems and, even with high- end hardware, too slow for real-time Often detection speed for these
approaches is measured in frames per second, and even the fastest high-accuracy detector, Faster R-
CNN, The detection speed for these approaches is measured in frames per second, and even the fastest
high-accuracy detector, Faster R-CNN, operates at only 7 frames per second (FPS). There have been
many attempts to build faster detectors by attacking each stage of the detec- tion pipeline (see related
work in Sect. 4), but so far, Significantly increased speed comes only at the cost of significantly
decreased detection accuracy.

This paper presents the first deep network based object detector that does not resample pixels or
features for bounding box hypotheses and is as accurate This results in a significant improvement in
speed for high-accuracy detection (59FPS with mAP 74.3% on VOC2007 test, vs Faster R- CNN
7TFPS with mAP 73.2% or YOLO 45FPS with mAP 63.4%). The fundamental improvement in speed
comes from eliminating bounding box proposals and the subsequent pixel or feature resampling stage.
first to do this (cf. [4,5]), but by adding a series of improvements, we manage to increase the accuracy
significantly over previous attempts. improvements include using a small convolutional filter to
predict object categories and offsets in bounding box locations, using separate predictors (filters) for
different aspect ratio detections, and applying these filters to multiple feature maps from the later
stages of a network in order to With these modifications-especially using multiple layers for prediction
at different scales-we can achieve high-accuracy detection at multiple scales. -We can achieve high-
accuracy using relatively low resolution input, further increasing detection speed. seem small
independently, we note that the resulting system improves accuracy on real-time detection for
PASCAL VOC from 63.4% mAP for YOLO to 74.3% mAP This is a larger relative improvement in
detection accuracy than that from the recent, very high-profile work on residual networks [3].
Furthermore, significantly improving the speed of high-quality detection can broaden the range of
settings where computer vision is useful.

We summarize our contributions as follows:

e - We introduce SSD, a single-shot detector for multiple categories that is faster than the previous
state-of-the-art for single shot detectors (YOLO), and significantly more accurate, in fact as accurate
as slower techniques that perform explicit region proposals and pooling (including Faster R-CNN).

e - The core of SSD is predicting category scores and box offsets for a fixed set of default bounding

boxes using small convolutional filters applied to feature maps.

e - To achieve high detection accuracy we produce predictions of different scales from feature maps

of different scales, and explicitly separate predictions by aspect ratio.
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Fig. 1. SSD framework. (a) SSD only needs an input image and ground truth boxes for each object
during training. In a convolutional fashion, we evaluate a small set (e.g. 4) of default boxes of
different aspect ratios at each location in several feature maps with different scales (e.g. 8x8 and 4x4
in (b) and (c) ). For each default box, we predict both the shape offsets and the confidences for all
object categories ((c1, c2, - - -, ¢p)). At training time, we first match these default boxes to the
ground truth boxes. For example, we have matched two default boxes with the cat and one with the
The model loss is a weighted sum between localization loss (e.g. Smooth L1 [6]) and confidence

These design features lead to simple end-to-end training and high accuracy, even on low resolution
input images, further improving the speed vs accuracy Experiments include timing and accuracy
analysis on models with varying input size evaluated on PASCAL VOC, COCO, and ILSVRC and
are com- pared to a range of recent state-of-the-art approaches.

2 The Single Shot Detector (SSD)

This section describes our proposed SSD framework for detection (Sect. 2.1) and the associated
training methodology (Sect. 2.2). Afterwards, Sect. 3 presents dataset-specific model details and
experimental results.

2.1 Model

The SSD approach is based on a feed-forward convolutional network that pro- duces a fixed-size
collection of bounding boxes and scores for the presence of The early network layers are based on a
The early network layers are based on a standard architecture used for high quality image classification

(truncated before any classification layers), which we will call the base "eWOrKL \we then add

auxiliary structure to the network to produce detections with the following key features:
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Fig. 2. A comparison between two single shot detection models: SSD and YOLO [5]. Our SSD model
adds several feature layers to the end of a base network, which predict the offsets to default boxes of
different scales and aspect ratios and their associated confidences. Our SSD model adds several feature
layers to the end of a base network, which predict the offsets to default boxes of different scales and
aspect ratios and their associated confidences. SSD with a 300 x 300 input size significantly
outperforms its 448 x 448 YOLO counterpart in accuracy on VOC2007 test while also improving the
speed.

We add convolutional feature layers to the end of the truncated base network. These layers decrease
in size progres- sively and allow predictions of detections at multiple scales. The convolutional model
for predicting detections is different for each feature layer (cf Overfeat [4] and YOLO [5] that operate
on a single scale feature map).

Each added feature layer (or optionally an existing feature layer from the base network) can produce
a fixed set of detection predictions using a set of convolutional filters. These are indi- cated on top of
the SSD network architecture in Fig.2. For a feature layer of size m x n with p channels, the basic
element for predicting parameters of a potential detection is a 3 x 3 x p small kernel that produces
either a score for a At each of the m x n locations where the kernel is applied, it produces an output
value. The bounding box offset output values are measured relative to a default box position relative
to each feature map location (cf the architecture of YOLO [5 ] that uses an intermediate fully
connected layer instead of a convolutional filter for this step).

We associate a set of default bounding boxes with each feature map cell, for multiple feature maps at
the top of the network The default boxes tile the feature map in a convolutional manner, so that the
position of each box relative to its corresponding cell is fixed. feature map cell, we predict the offsets
relative to the default box shapes in the cell, as well as the per-class scores that indicate the presence
of a class Specifically, for each box out of k at a given location, we compute ¢ class scores and the 4
offsets relative to the original This results in a total of (c + 4)k filters that are applied around each
location in the feature map, yielding (c + 4)kmn outputs for am x n For an illustration of default boxes,
please refer to Fig. 1. Our default boxes are similar to the anchor boxes used in Faster R-CNN [2],
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Our default boxes are similar to the anchor boxes used in Faster R-CNN [2], however we apply them
to several feature maps of different resolutions. Allowing different default box shapes in several
feature maps let us efficiently discretize the space of possible output box shapes.

2.2 Training

The key difference between training SSD and training a typical detector that uses region proposals, is
that ground truth information needs to be assigned to specific outputs in the fixed set of detector
outputs. Some version of this is also required for training in YOLO [5] and for the region proposal
stage of Faster R- CNN [2] and MultiBox [7]. Once this assignment is determined, the loss function
and back propagation are applied end-to-end. Training also involves choosing the set of default boxes
and scales for detection as well as the hard negative mining and data augmentation strategies.

During training we need to determine which default boxes correspond to a ground truth detection and
train the network accordingly. For each ground truth box we are selecting from default boxes that vary
over location, aspect ratio, and scale. We begin by matching each ground truth box to the default box
with the best Jaccard overlap (as in MultiBox [7]). Unlike MultiBox, we then match default boxes to
any ground truth with Jaccard overlap higher than a threshold (0.5). This simplifies the learning
problem, allowing the network to predict high scores for multiple overlapping default boxes rather
than requiring it to pick only the one with maximum overlap.

Training Objective. The SSD training objective is derived from the MultiBox objective [7,8] but is
extended to handle multiple object categories. let xpij = {1, 0} be an indicator for matching the i-th

default box to the j-th ground truth box of category p. In the matching strategy above, we can have

P
2% 21 .The overall objective loss function is a weighted sum of the localization loss (loc) and

the confidence loss (conf):

1
L(Ia Ca‘lag) = N(LCOﬂf(I:aC) +C‘5Lloc($alag)) (1)

where N is the number of matched default boxes, and the localization loss is the Smooth L1 loss [6]
between the predicted box (1) and the ground truth box (g) parameters. Similar to Faster R-CNN [2],
we regress to offsets for the center of the bounding box and for its width and height. our confidence
loss is the softmax loss over multiple classes confidences (c¢) and the weight term o is set to 1 by
cross validation.

Choosing Scales and Aspect Ratios for Default Boxes. To handle differ- ent object scales, some
methods [4,9] suggest processing the image at different However, by utilizing feature maps from
several different layers in a single network for prediction we can mimic the same effect, while also
sharing parameters across all object scales. Previous works [10,11] have shown that using feature
maps from the lower Previous works [10,11] have shown that using feature maps from the lower layers
can improve semantic segmentation quality because the lower layers capture more fine details of the
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input objects. Similarly, [12] showed that adding global context pooled from a feature map can help
smooth the segmentation results. Figure 1 shows two exemplar feature maps (8 x 8 and 4 x 4) which
are used in the framework. In practice, we can use many more with In practice, we can use many more
with small computational overhead.

We design the tiling of default boxes so that specific feature maps learn to be responsive to
particular scales of the objects. The scale of the default boxes for each feature map is computed as:

Sk = Smin + M(k - 1)1 k S [1,'."71] (2)
m—1

By combining predictions for all default boxes with different scales and aspect ratios from all
locations of many feature maps, we have a diverse set of For example, in Fig. 1, the dog is matched
to a default box in the 4 x 4 feature map, but not to This is because those boxes have different scales
and do not match the dog box, and therefore are considered as This is because those boxes have
different scales and do not match the dog box, and therefore are considered as negatives during
training.

Hard Negative Mining. After the matching step, most of the default boxes are negatives, especially
when the number of possible default boxes is large. This introduces a significant imbalance between
the positive and negative training examples. Instead of using all the negative examples, we sort them
Instead of using all the negative examples, we sort them using the highest confidence loss for each
default box and pick the top ones so that the ratio between the negatives and positives is at most 3:1.
that this leads to faster optimization and a more stable training.

To make the model more robust to various input object sizes and shapes, each training image is
randomly sampled by one of the following options:

- Use the entire original input image.
- Sample a patch so that the minimum Jaccard overlap with the objects is 0.1, 0.3, 0.5, 0.7, , or 0.9.
Randomly sample a patch.

The size of each sampled patch is [0.1, 1] of the original image size, and the aspect ratio is between
12 and 2. We keep the overlapped part of the ground truth We keep the overlapped part of the

ground truth box if the center of it is in the sampled patch. After the aforementioned sampling step,
each sampled patch is resized to fixed size and is horizontally After the aforementioned sampling
step, each sampled patch is resized to fixed size and is horizontally flipped with probability of 0.5, in
addition to applying some photo-metric distortions similar to those described in [13].

3 Experimental Results

Base Network. Our experiments are all based on VGG16 [14], which is pre-trained on the ILSVRC
CLS-LOC dataset [15]. Similar to DeepLab- LargeFOV [16], we convert fc6 and fc7 to
convolutional layers, subsample para- meters from fc6 and fc7, change pool5 from 2x2 -s2 to 3x3-
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s1, and use the atrous algorithm to fill the "holes". We remove all the dropout layers and the fc8

layer. we fine-tune the resulting model using SGD with initial learning rate 10'3, 0.9 momentum,

We fine-tune the resulting model using SGD with initial learning rate 10-3, 0.9 momentum, 0.0005
weight decay, and batch size 32. The learning rate decay policy is slightly different for each dataset,
and we will describe details later. training and testing code is built on Caffe [17] and is open source
at https://github.com/weiliu89/caffe/tree/ssd.

3.1 PASCAL VOC2007

On this dataset, we compare against Fast R-CNN [6] and Faster R-CNN [2] on VOC2007 test (4952
images). All methods use the same pre-trained VGG16 network.

Figure 2 shows the architectural details of the SSD300 model. we use conv4 3, conv? (fc7),

conv8 2, convd 2, conv10 2, and convl 2 to predict both location and CONTIdeNCes2 \we initialize

the parameters for all the newly added convolu- tional layers with the "xavier" method [18]. For
conv4 3, conv10 2 and conv1l 2, we only associate 4 default boxes at each feature map location -
omitting aspect ratios of 13 and 3. For all Since, as pointed out in [12], conv4 3 has a different
feature scale com- pared to the other Since, as pointed out in [12], conv4 3 has a different feature
scale com- pared to the other layers, we use the L2 normalization technique introduced in [12] to

scale the feature norm at each location in the feature map to 20 and learn the scale We use the 10-3

learning rate for 40k

Table 1. PASCAL VOC2007 test detection results. both Fast and Faster R- CNN use input images
whose minimum dimension is 600. the two SSD models have exactly The two SSD models have
exactly the same settings except that they have different input sizes (300 x 300 vs. 512 x 512). It is
obvious that larger input size leads to better results, and more data always helps. data: "07":
VOC2007 trainval, "07+12": union of VOC2007 and VOC2012 trainval. "07+12+COCQ": first train
on COCO trainval35k then fine- tune on 07+12.

Method data mAF | sero bike bird boat bottle bus  car  cat  chair cow tshle dog horse mbike person plant sheep sofs train v
Fast [6] o7 669|745 78.3 69.2 53.2 36.6 77.3 TRZ 82.0 40.7 72.7 67.9 T9.6 79.2 T73.0 69.0 30.1 654 70.2 758 65.8
Fast [6] 07+12 70.0177.0 78.1 69.3 59.4 383 Bl.6 T8.6 86.7 42.8 788 68.9 B4.7 82.0 T6.6 699 318 70.1 74.8 B04 704
Faster [2] o7 69.9|70.0 806 70.1 57.3 49.9 782 804 82.0 52.2 753 67.2 803 T9.8 75.0 763 30.1 683 67.3 Bl.1 67.6

Faster [2]| O7+12 (732|765 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 848 846 T7.5 767 388 73.6 73.9 83.0 72.6
Faster [2] | 07+12+C0OCO [7T8.8 (843 §2.0 77.7 689 657 B8.1 88.4 889 63.6 863 70.8 859 87.6 BO.1 823 53.6 804 758 86.6 78.0
S5DA0 07 68.0(73.4 77.5 64.1 59.0 389 752 B0.8 78.5 46.0 67.8 69.2 76.6 82.1 77.0 725 41.2 642 69.1 78.0 685
S5D300 07+12  |74.1)746 802 72.2 662 47.1 829 834 6.1 54.4 785 739 844 845 R24 761 486 743 750 843 74.0
SSD30 | 07+12+COCO [79.6 (809 8§63 79.0 76.2 57.6 87.3 88.2 88.6 60.5 854 76.7 87.5 89.2 845 8§14 550 819 8L5 859 78.9
S8D512 07 TL6(751 814 698 608 463 826 B4.7 84.1 485 750 674 823 839 794 766 449 699 60.1 781 718
S8D512 07+12 |76.8)|824 847 784 738 532 B6.2 875 B6.0 57.8 83.1 702 B4.9 852 R39 797 503 779 739 825 753
SSD512 |07+12+COCO [81.5(86.9 §7.5 82.0 75.5 66.4 88.2 88.7 89.3 65.2 8§8.3 744 87.1 889 859 845 57.6 B4.6 850.7 87.1 BL7

Iterations, then we continue training for 10k iterations with 10-4 and 10-5 When we train SSD on a

larger 512 x 512 input image it is even more accurate, If we train SSD with more (i.e. 07 + 12) data,
we observe that SSD300 is already better than Faster R-CNN by 0.9 % and that If we take models
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trained on COCO trainval35k as described in Sect. 3.4 and fine-tuning them on the 07 + 12 dataset
with SSD512, we achieve the best results: 81.5 % mAP.

To understand the performance of our two SSD models in more details, we used the detection
analysis tool from [19]. Figure3 shows that SSD can detect various object categories with high
quality (large white area). The recall is around 85-90 %, and is much higher with "weak "Compared
to R-CNN [20], SSD has less localization error, indicating that SSD can localize objects better
because it directly learns to regress the object shape and classify object categories instead of using
two decoupled steps. However, SSD has more confusions with similar object categories (especially
for animals), partly because we share locations for multiple categories. In other words, it has much
worse performance on smaller objects than bigger objects. Increasing the input size (e.g. from 300 x
300 to 512 x 512) can help On the positive side, we can clearly see that SSD performs really well on
large And it is very robust to different object aspect ratios because we use default boxes of various
aspect ratios per feature map location.
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Fig. 3. Visualization of performance for SSD 512 on animals, vehicles, and furniture from
VOC2007 test using [19]. The top row shows the cumulative frac- tion of detections that are correct
(Cor) or false positive due to poor localization (Loc), confusion with similar categories (Sim), with
others (Oth), or with background (BG). The bottom row shows the distribution of top-ranked false
positive types.
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Fig. 4. Sensitivity and impact of different object characteristics on VOC2007 test set using
[19]. The plot on the left shows the effects of BBox Area per category, and the right plot shows the
effect of Aspect Ratio.

3.2 Model Analysis

To understand SSD better, we carried out controlled experiments to examine how each component
affects performance. For all the experiments, we use the same settings and input size (300 x 300),
except for specified changes to the settings or component(s). For all the experiments, we use the
same settings and input size (300 x 300), except for specified changes to the settings or
component(s).

Table 2. Effects of various design choices and components on SSD performance.

SSD300
more data augmentation? v v v |V
include {3, 2} box? v v v v
include {1, 3} box? v v |V
use atrous? v (v v v
VOC2007 test mAP 65.5|7L.6 T73.7 744|743

Table 3. Effects of multiple layers.

Source layers from: mAP use boundary boxes? | # Boxes
conv4d_3 | conv?  conv8.-2 conv9.2 | convl10-2 | convll.-2  Yes | No
v v v v v v 74.3|63.4 8732
v v v v v 74.6 | 63.1 8764
v v v v 73.8 | 68.4 8942
v v v 70.7 | 69.2 9864
v v 64.2 | 64.4 9025
v | 62.464.0 | 8664
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Data Augmentation is Crucial. Fast and Faster R-CNN use the original image and the horizontal
flip to train. we use a more extensive sampling strategy, similar to YOLO [5]. Table 2 shows that we
can improve 8.8 % mAP with this sampling strategy. We do not know how much our sampling
strategy will benefit Fast and Faster R-CNN, but they are likely to benefit less because they they are
likely to benefit less because they use a feature pooling step during classification that is relatively
robust to object translation by design.

As described in Sect. 2.2, by default we use 6 default boxes per location. , the performance drops by
0.6%. By further removing the boxes with 1 and 2 aspect ratios- the performance drops another
2.1%. Using a variety of default box shapes seems to make the task of predicting boxes easier for the
network.

Atrous is Faster. As described in Sect. 3, we used the atrous version of a sub-sampled VGG16,
following DeepLab-LargeFOV [16]. If we use the full VGG16, keeping pool5 with 2 x 2 - s2 and
not subsampling parameters from fc6 and fc7, and add conv5 3 for prediction, the result is about the
same while the speed is about 20 % slower.

Multiple Output Layers at Different Resolutions is Better. A major contribution of SSD is using
default boxes of different scales on different output To measure the advantage gained, we
progressively remove layers and compare results. For a fair comparison, every time we remove a
layer, we adjust the default box tiling to keep the total number of boxes similar to the original
(8732). This is done by stacking more scales of boxes on remaining layers and adjusting scales of
boxes if needed. Table 3 shows a decrease in accuracy with fewer layers, dropping monotonically
from 74.3 to 62.4. When we stack boxes of multiple scales on a We tried the strategy used in Faster
R-CNN [2], ignoring boxes which are on the We observe some interesting trends. For example, it
hurts the performance by a large margin if we use very coarse feature maps (e.g. convil 2 (1 x 1)
or conv10 2 (3 x 3)). The reason might be that we do not have enough large boxes to cover large
objects after the pruning. When we use primarily finer resolution maps, the performance starts
increasing again because even after pruning a sufficient number of large boxes remains.
performance is the worst, reinforcing the message that it is critical to spread boxes of different scales
over different layers.

3.3 PASCAL VOC2012

We use the same settings as those used for our basic VOC2007 experiments above, except that we
use VOC2012 trainval and VOC2007 trainval and test (21503 images) for training, and test on
VOC2012 test (10991 images). images) for training, and test on VOC2012 test (10991 images). We

train the models with 10-3 learning rate for 60k iterations, then 10-4 for 20k iterations. Table 4

shows the results of our We see the same performance trend as we observed on VOC2007 test. Our
SSD300 improves accuracy over Fast/Faster R-CNN. increasing the training and test- ing image size
to 512 x 512, we are 4.5 % more accurate than Faster R-CNN. accurate, likely due to the use of
convolutional default boxes from multiple feature maps and our matching strategy during training.
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from models trained on COCO, our SSD512 achieves 80.0 % mAP, which is 4.1 % higher than
Faster R-CNN.

3.4 COCO

To further validate the SSD framework, we trained our SSD300 and SSD512 architectures on the
COCO dataset. Since objects in COCO tend to be smaller than We follow the strategy mentioned in
Sect. 2.2, but now our smallest default box has a scale of 0.15 We follow the strategy mentioned in
Sect. 2.2, but now our smallest default box has a scale of 0.15 instead of 0.2, and the scale of the
default box on conv4 3 is 0.07 (e.g. 21 pixels for a 300 x 300 image).

We use the trainval35k [21] for training. We first train the model with 10-3 learning rate for 160k

iterations, and then continue training for 40Kk iter- ations wit

(, 10-4

Table5 shows the results on

and 40k iterations wit

h 10-5.

Table 4. pASCAL VOC2012 test detection results. fast and Faster R-CNN use images with
minimum dimension 600, while the image size for YOLO is 448 x 448. data : "07++12": union of
VOC2007 trainval and test and VOC2012 trainval. "07++12+COCO": first train "07++12+COCO":
first train on COCO trainval35k then fine-tune on 07++12.

Method data mAP | asro bike bird boat bottle bus  car  cat  chair cow tshle dog horse mbike person plant sheep sofa traim v
Fast[6] 07++12 |68.4)82.3 78.4 70.8 52.3 387 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 720 35.1 683 657 804 64.2
Fuster[2] 07++12  |70.4|84.9 79.8 74.3 53.9 408 77.5 75.0 88.5 45.6 77.1 553 B6.9 BL.7 809 79.6 40.1 72.6 609 81.2 61.5
Faster[2] |074+124C0OC0 | 75.9 1874 83.6 76.8 62.9 59.6 B1.9 82.0 91.3 54.9 82.6 59.0 89.0 855 84.7 841 522 789 65.5 854 70.2
YOLO[S)| 07++12 |57.9|77.0 67.2 57.7 38.3 22.7 68.3 55.0 81.4 36.2 60.8 485 77.2 72.3 713 63.5 289 52.2 54.8 739 50.8
SSD300 07++12 |72.4|85.6 BO.1 705 57.6 46.2 79.4 76.1 89.2 53.0 77.0 608 87.0 83.1 823 794 459 759 69.5 8§19 67.5
S5D300 | 07++124C0OC0 | 77.5)|90.2 83.3 76.3 63.0 53.6 83.8 82.8 92.0 59.7 82.7 635 89.3 87.6 859 843 52.6 B2.5 74.1 884 742
85D512 07++12 |74.9|874 8213 758 59.0 52.6 BL.7 B1.5 90.0 554 79.0 598 B84 B4.3 847 833 50.2 78.0 663 86.3 72.0
S8D512 | 07++124C0C0 | 80.0 |90.7 8B6.8 B0.5 67.8 60.8 86.3 85.5 93.5 63.2 85.7 644 90.9 B9.0 BEY B6.8 57.2 B5.1 72.8 884 759

Table 5. COCO test-dev2015 detection results.

Method Data Mean average precision
0.5 0.75 |0.5:0.95
Fast R-CNN [6] train 35.9 |- 19.7
Fast R-CNN [21] | train 39.9 [20.5 194
Faster R-CNN [2] |train 42.1 |- 21.5
Faster R-CNN [2] | trainval 42.7 |- 21.9
Faster R-CNN [22] | trainval 45.3 124.2 |23.5
ION [21] train 42.0 123.0 |23.0
SSD300 trainval3sk | 41.2 1 23.2 | 234
SSD512 trainval35k | 46.4 | 26.7 | 27.7
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test-dev2015. Similar to what we observed on the PASCAL VOC dataset, SSD300 is better than
Fast R-CNN in both mAP@0.5 and mAP@][0.5:0.95]. SSD300 has a similar mAP@[0.5:0.95] to
Faster R-CNN [22]. However, the mAP@0.5 is worse and we conjecture that it is because the image
size is too small, which prevents the model from detecting many small objects. But over- all, SSD
can localize objects more accurately. By increasing the image size to 512x512, our SSD512 is better
than Faster R-CNN in both criteria. In addition, our SSD512 model is also better than ION [21], a
multi-scale version of Fast R- CNN with explicit modeling of context using a recurrent network . In
Fig. 5, we show some detection examples on COCO test-dev with the SSD512 model.

3.5 Preliminary ILSVRC Results

We applied the same network architecture we used for COCO to the ILSVRC DET dataset [15]. We
train a SSD300 model using the ILSVRC2014 DET train and vall as used in [20]. We first train the

model with 10-3 learning rate for 320k iterations, and then continue training for 80k iterations with

10-4 and 40k.

3.6 Inference Time

Considering the large number of boxes generated from our method, it is essen- tial to perform non-
maximum suppression (nms) efficiently during By using a confidence threshold of 0.01, we can filter
out most boxes. We then apply nms with Jaccard overlap of 0.45 per class and keep the top 200 This
step costs about 1.7 ms per image for SSD300 and 20 VOC classes, which is close to the total time
(2.4 ms) spent on all newly added layers.

Table6 shows the comparison between SSD, Faster R-CNN [2], and YOLO [5]. Both our SSD300
and SSD512 method outperforms Faster R-CNN in both speed and accuracy. Although Fast YOLO
[5] can run at 155 FPS, it has lower accuracy by To the best of our knowledge, SSD300 is the first
real-time method to achieve above 70% mAP. Note that about 80% of the forward time is spent on
the base network (VGG16 in our case). Therefore, using a faster base network could further improve
the speed, making the SSD512 model real-time as well.
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Table 6. Results on Pascal VOC2007 test. SSD300 is the only real-time detection
method that can achieve above 70 % mAP. By using a larger input image, SSD512
outperforms all methods on accuracy while maintaining a close to real-time speed.
Using a test batch size of 8 improves the speed further.

Method mAP | FPS | Test batch size | # Boxes
Faster R-CNN [2] (VGG16) | 73.2 7|1 300
Faster R-CNN [2] (ZF) 62.1 17 |1 300
YOLO [5] 63.4 | 45 |1 98
Fast YOLO [5] 52.7 155 |1 98
SSD300 74.3 | 46 |1 8732
SSD512 76.8 19 |1 24564
SSD300 743 | 59 |8 8732
SSD512 76.8 | 22 |8 24564

4 Related Work

There are two established classes of methods for object detection in images, one based on sliding
windows and the other based on region proposal Classification. Before the advent of convolutional
neural networks, the state of the art for those two approaches - Deformable Part Model ( However,
after the dramatic improvement brought on by R-CNN [20], which combines selective search region
proposals and con- volutional network based post-classification, region proposal object detection
methods became prevalent.

The original R-CNN approach has been improved in a variety of ways. The first set of approaches
improve the quality and speed of post-classification, The first set of approaches improve the quality
and speed of post-classification, since it requires the classification of thousands of image crops,
which is expensive and time-consuming. It introduces a spatial pyramid pooling layer that is more
robust to region size and scale and allows the classification layers Fast R-CNN [6] extends SPPnet
so that it can fine-tune all layers end-to-end by minimizing a loss for both confidences and bounding
box regression, which was first introduced in MultiBox [7] for learning objectness.

The second set of approaches improve the quality of proposal generation using deep neural
networks. In the most recent works like MultiBox [7,8], the Selective Search region proposals,
which are based on low-level image features, are replaced by proposals generated directly from a
separate deep This further improves the detection accuracy but results in a somewhat complex setup,
requiring the training of two neural networks with a dependency between them. Faster R-CNN [2]
replaces selective search proposals by ones learned from a region proposal network (RPN), and
introduces a method to integrate the RPN with Fast R-CNN. Faster R-CNN [2] replaces selective
search proposals by ones learned from a region proposal network (RPN), and introduces a method to
integrate the RPN with Fast R-CNN by alternating between fine-tuning shared convolutional layers
and prediction layers for these two networks This way region proposals are used to pool mid-level
features and the final classification step is less expensive. proposal network (RPN) in Faster R-CNN
in that we also use a fixed set of (default) boxes for prediction, similar to the achor boxes in the
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RPN. using these to pool features and evaluate another classifier, we simultaneously produce a score
for each object category in each box. Thus, our approach avoids the complication of merging RPN
with Fast R-CNN and is easier to train, faster, and straightforward to integrate in other tasks.

Another set of methods, which are directly related to our approach, skip the proposal step altogether
and predict bounding boxes and confidences for OverFeat [4], a deep version of the sliding window
method, predicts a bounding box directly from each location of the YOLO [5] uses the whole
topmost feature map to predict both confidences for multiple categories and bounding boxes (which
are shared for these categories). Our SSD method falls in this category because we do not have the
proposal step but use the default boxes. existing methods because we can use default boxes of
different aspect ratios on each feature location from multiple feature maps at different scales. we
only use one default box per location from the topmost feature map, our SSD would have similar
architecture to OverFeat [4]; if we use the whole topmost feature map and add a fully connected
layer for predictions instead of our convolutional

Fig. 5. Detection examples on COCO test-dev with SSD512 model. we show detections with scores
higher than 0.6. each color corresponds to an object Each color corresponds to an object category.

predictors, and do not explicitly consider multiple aspect ratios, we can approx- imately reproduce
YOLO [5].

5 Conclusions
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This paper introduces SSD, a fast single-shot object detector for multiple cate- gories. A key feature
of our model is the use of multi-scale A key feature of our model is the use of multi-scale bounding
box outputs attached to multiple feature maps at the top of the network. We experimentally validate
that given appropriate training strategies, a larger num- ber of carefully chosen default bounding
boxes results in improved performance. We experimentally validate that given appropriate training
strategies, a larger num- ber of carefully chosen default bounding boxes results in improved
performance, and aspect ratio, than existing methods [5,7].

We demonstrate that given the same VGG-16 base architecture, SSD com- pares favorably to its
state-of-the-art object detector counterparts in terms of Our SSD512 model significantly
outperforms the state-of-the-art Faster R-CNN [2] in terms of accuracy on PASCAL VOC and
COCO, Our real time SSD300 model runs at 59FPS, which is faster than the current real time
YOLO [5] alternative, while producing markedly superior detection accuracy.

Apart from its standalone utility, we believe that our monolithic and rel- atively simple SSD model
provides a useful building block for larger systems A promising future direction is to explore its use
as part of a system using recurrent neural networks to detect and track objects in video
simultaneously. and track objects in video simultaneously.

This work was started as an internship project at Google and continued at UNC. We would like to
thank Alex Toshev for helpful discussions and are indebted to the Image Understanding and
DistBelief teams at Google. We would like to thank Alex Toshev for helpful discussions and are
indebted to the Image Understanding and DistBelief teams at Google. thank NVIDIA for providing
GPUs and acknowledge support from NSF 1452851, 1446631, 1526367, 1533771.
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Appendix B Waypoint Sending Procedures

# Waypoint Sender
import time
import socket

import string

class Position:

def init_ (self,x,y,z):
self.x=x
self.y=y

self.z=z

class PosePo(Position):
def init_ (self,x,y,z):
super(). _init _ (selfx,y,z,Rx,Ry,RZ)
self.Rx=Rx
self.Ry=Ry
self.Rz=Rz

def init_socket():
#send cmd to the dual-arm robot
debug_local=0
if debug_local==1:
target_ip1=("127.0.0.1",7000)
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else:
target ip1=("192.168.1.50",2000)
#create socket target
global sk
sk = socket.socket()

sk.connect(target ip1)

def remove np(s):

return ".join( ¢ for ¢ in s if ¢ in string.printable)

def check_status():
while True:
msg=sk.recv(1000)
msg=msg.decode()
print(msg)
if msg.find("finish")! =-1:
try:
target_ip_tool=("192.168.0.10",7000)
tsk=socket.socket()
tsk.connect(target_ip_tool)
cmd="executeC"
tsk.send(cmd.encode())
except:
print("cannot connect pi")
Finally:
print(cmd)
break

return True

#print(counter)

#print("motion done")

def main():

#define motion for robot

105



Beijing Jiaotong University Graduation Design (Thesis)

Appendix
try:
init_socket()
except:
print("fail to connect robot")
with open("wayPoints.txt",'r") as f:
script1=f.read()
scriptl=remove np(scriptl)
f.close()
sk.send(scriptl.encode())
status=check _status()
#rotate cup and place
script2="<start>LP/ movej pose([-340,640,1040,78,51,90],40,20-1);
sync_flag(1);movej pose([-162,670,1220,131,24,107],40,20,-1) ; sync_flag(2);movej_pose([-
300,620,870,78,51,90],40,20,-1);/RP/ movej pose([313,620,1017,90,40,-95],40,20,-
1);sync_flag(1);sync_ flag(2); movej pose([400,620,870,90,40,-95],40,20,-1);<end>"

#back home
script3="<start>LP/ sleep(6000);movej pose([-162,620,1200,78,51,90],40,20,-
1);movej pose([-900,700,1250,90,0,167],40,20,-1); movej([-0,-0,-0,-90,0,-0,0],30,2000,-1);

/RP/sleep(6000); movej pose([313,620,1200,90,40,-95],40,20,-1); movej_pose([900,700,1250,90,
0,167],40,20,-1);movej([0,-0,0,90,-0,-0,0],30,2000,-1);<end>"
if status:
sk.send(script2.encode())
while True:
flag=sk.recv(1000)
flag=flag.decode()
print(flag)
if flag.find("finish")! =-1:
sk.send(script3.encode())
try:
target ip_tool=("192.168.0.10",7000)
tsk=socket.socket()
tsk.connect(target_ip_tool)
cmd="executeO"

tsk.send(cmd.encode())

106



Beijing Jiaotong University Graduation Design (Thesis)

Appendix
except:
print("fail to connect pi")
Finally:
break
if name ==' main_ "

main()

Appendix C Visual Positioning Procedure

#! /usr/bin/env python
## Author: Rohit
## Date: July, 25, 2017

# Purpose: Ros node to detect objects using tensorflow

import os

import sys

import cv2

import numpy as np

import tf as rostransform

import tf.msg as rostransform_msg

import geometry msgs.msg

import math

try:
import tensorflow as tf

except ImportError:
print("unable to import TensorFlow. Is it installed?")
print(" sudo apt install python-pip")
print(" sudo pip install tensorflow ")

sys.exit(1)
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# ROS related imports

import rospy

from std_msgs.msg import String , Header

from sensor msgs.msg import Image

from cv_bridge import CvBridge, CvBridgeError

from vision msgs.msg import Detection2D, Detection2DArray, ObjectHypothesisWithPose,
ObjlInfo

import message_filters

# Object detection module imports
import object detection
from object detection.utils import label map util

from object detection.utils import visualization_utils as vis_util

DEBUG MODE=1 # 1=verbos 0=not_verbose
#

#
PUBLISH_IN_ CAMERA FRAME=False
#

IMAGE_HEIGHT=480
IMAGE_WIDTH=640

#

rospy.set_param('zinverse depth_scaling')

# SET FRACTION OF GPU YOU WANT TO USE HERE
GPU_FRACTION =0.4

A Set model here Hit#HHHHHHH#H#H
MODEL NAME ="'ssd_mobilenet vl coco 11 06 2017
# By default models are stored in data/models/

MODEL_ PATH = os.path.join(os.path.dirname(sys.path[0]),'data’,'models' , MODEL _NAME)
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# This is the actual model that is used for the object detection.
PATH _TO CKPT =MODEL PATH + '/frozen_inference graph.pb'
HitHHHH##H Set the label map file here ##H###HHHH#HHE
LABEL NAME ='mscoco_label map.pbtxt'
# By default label maps are stored in data/labels/
PATH_TO_ LABELS = os.path.join(os.path.dirname(sys.path[0]),'data’,'labels', LABEL NAME)
i Set the number of classes here ###HH##H##
NUM_CLASSES =90
llocdata=np.array([])

rlocdata=np.array([])

detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf. gfile. GFile(PATH _TO_CKPT, 'rb') as fid:
serialized graph = fid.read()
od graph_def.ParseFromString(serialized graph)
tfimport_graph_def(od_graph def, name=")

## Loading label map

# Label maps map indices to category names, so that when our convolution network predicts '5",

# we know that this corresponds to “airplane’. Here we use internal utility functions,

# but anything that returns a dictionary mapping integers to appropriate string labels would be
fine

label _map = label map_util.load labelmap(PATH _TO LABELS)

categories = label map util.convert label map to categories(label map,
max_num_classessNUM_CLASSES, use_display _name=True)

category index = label _map util.create category index(categories)

# Setting the GPU options to use fraction of gpu that has been set
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = GPU_FRACTION
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# Detection

class Detector:

Image)

def init (self):

self.bridge = CvBridge()

self.sess = tf.Session(graph=detection_graph,config=config)

#self.depth_image sub = messag e _filters.Subscriber(‘image', Image)
#self.color_image sub =message filters.Subscriber('/camera/rgb/image raw', Image)

self.depth_image sub = message filters.Subscriber('/camera/depth/image rect raw',

self.color_image sub = message _filters.Subscriber('/camera/rgb/image raw', Image)

ApproximateTimeSynchronizer([self.depth_image sub, self.color_image sub],

10,0.1,allow_headerless=True)

ts.registerCallback(self.processing_cb)

self.tf listener = rostransform.TransformListener()

self.image pub = rospy.Publisher("debug_image",Image, queue_size=1)
self.left_obj_pub = rospy.Publisher("LeftObjects", Objlnfo, queue size=1)
self.right_obj_pub = rospy.Publisher("RightObjects", Objlnfo, queue size=1)
self.object pub = rospy.Publisher("objects", Detection2DArray, queue_size=1)
#using rostransform instead of tf for namespace reasons

self.pub_tf = rospy.Publisher("/tf", rostransform msg.tfMessage, queue size=1)
self.test_pub = rospy.Publisher("new_debug image",Image, queue_size=1)

self.debug_pub = rospy.Publisher("depth _debug_image",Image, queue size=1)

110



3]

Beijing Jiaotong University Graduation Design (Thesis)

Appendix

def processing_cb(self, depth img data, color img_data):

#print('----")

data = color_img_data # for consistency with prev source

objArray = Detection2DArray()

try:
cv_image = self.bridge.imgmsg_to cv2(data, "bgr8")
depth_img_data.encoding = "mono16" # need this to work
depth_image = self.bridge.imgmsg_to cv2(depth_img_data, "mono16")
#print('cv_image shape: '+str(cv_image.shape))
#print('depth_image shape: "+str(depth_image.shape))

except CvBridgeError as e:

print(e)

image=cv2.cvtColor(cv_image,cv2.COLOR BGR2RGB)

# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image np = np.asarray(image)

# Expand dimensions since the model expects images to have shape: [1, None, None,

image np_expanded = np.expand_dims(image np, axis=0)

image tensor = detection_graph.get tensor by name('image_tensor:0')

# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get tensor by name('detection_boxes:0")

# Each score represents how level of confidence for each of the objects.

# Score is shown on the result image, together with the class label.

scores = detection_graph.get tensor by name('detection_scores:0")

classes = detection_graph.get_tensor by name('detection_classes:0")

num_detections = detection_graph.get tensor by name('num_detections:0")
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(boxes, scores, classes, num_detections) = self.sess.run([boxes, scores, classes,
num_detections],

feed dict={image tensor: image np expanded})

objects=vis_util.visualize boxes_and labels _on_image array(
image,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use normalized coordinates=True,

line thickness=2)

objArray.detections =[]
objArray.header=data.header

object_count=1

for 1 in range(len(objects)):
object_count+=1
obj_struct = self.object_predict(objects[i],data.header,image np,cv_image)

objArray.detections.append(obj_struct)

#print(objects[i])

# get depth of object and write debug info on cv_image

avg_depth, center, cv_image = self.get object depth(obj struct, cv_image,
depth_image, 1)

ifavg depth ==0:

continue

# calculate 3D tf and publish it
obj_id = objects[i][0]

obj_category = category index[obj_id]['name']
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self.object tf publisher(center, avg depth, obj category, i)

self.object pub.publish(objArray)

if DEBUG_MODE == :

# /debug_image - base tensorflow image detection
img=cv2.cvtColor(image np, cv2.COLOR_BGR2RGB)
image out = Image()
try:

image out = self.bridge.cv2 _to_imgmsg(img, "bgr8")
except CvBridgeError as e:

print(e)
image out.header = data.header

self.image pub.publish(image out)

depth_image out = depth_image # TODO: remove this debug image and all
instances hereafter
try:
cv_image out = self.bridge.cv2 to imgmsg(cv_image, "bgr8")
depth_image out = self.bridge.cv2 to imgmsg(depth image out,
"monol6")
except CvBridgeError as e:
print(e)
self.test_pub.publish(cv_image out)
self.debug_pub.publish(depth_image out)

def object tf publisher(self, center, avg_depth, obj category, 1):

# (col,row) for rgb image

113



Beijing Jiaotong University Graduation Design (Thesis)

Appendix

u = center[1] - IMAGE HEIGHT/2
v = center[0] - IMAGE_WIDTH/2
# u/v = y/z, so need a sclaing factor
y_scaling_factor = rospy.get param('zinverse depth scaling/y")
z_scaling_factor = rospy.get_param('zinverse_depth scaling/y")
y =y scaling_factor * v
z =z_scaling_factor * u
try:

x = math.sqrt(avg_depth**2 - y**2 - z*¥*2)
except:

print('[ERROR] calculating x')

return # was continue in that loop

if DEBUG_MODE == I:
Picked ObjName='cup'
global llocdata
global rlocdata
# print('b_Object: '+obj_category+' '+str(i))
# print('Pixel coords: +str(u)+','+str(v))
# print('3D Coords : "tstr(x)+','+str(y)+', +str(z))
if obj_category.find(Picked ObjName)! =-1:
if y>0:
objInfo=0bjlnfo()
objInfo.name=obj_category
objInfo.x=x
objInfo.y=y
objInfo.z=z
#print("leftCup find")
self.left obj pub.publish(objInfo)

else:
objInfo=0bjlnfo()
objInfo.name=obj_category

objInfo.x=x
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objInfo.y=y
objInfo.z=z
#print("rightCup find")
self.right obj pub.publish(objInfo)
# if llocdata.size==12:
# llocdata=llocdata.reshape(4,3)
# mean_arr=np.mean(llocdata,axis=0)
# std_arr=np.std(llocdata, axis=0)
# mean_x=mean_arr[0]
# std_x=std_arr[0]
# range low =mean_x - std x
# range high =mean x+std x
# data_x=llocdata[:,0]
# index=np.where([data_x<range low,data_x>range high])
# llocdata=np.delete(llocdata,index,axis=0)
# position_arr=np.mean(llocdata,axis=0)
# x=position_arr[0]
# y=position_arr[1]

# z=position_arr[2]

# if rlocdata.size==12:

# rlocdata=rlocdata.reshape(4,3)

# mean_arr=np.mean(rlocdata,axis=0)

# std_arr=np.std(rlocdata, axis=0)

# mean_x=mean_arr[0]

# std_x=std_arr[0]

# range low =mean_x - std x

#range high = mean x+std x

# data_x=rlocdata][:,0]

# index=np.where([data_x<range low,data x>range high])
# rlocdata=np.delete(rlocdata,index,axis=0)
# position_arr=np.mean(rlocdata,axis=0)

# x=position_arr[0]
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# y=position_arr[1]

# z=position_arr[2]

# TODO: use br.sendTransform (not necessary)

def get _object depth(self, obj_struct, cv_image, depth_image, 1):

#

X SCALING = 1.333

Y SCALING =0.75

bbox = obj_struct.bbox

top_left = (int((bbox.center.x-(bbox.size x/2))*X SCALING)), \
(int((bbox.center.y-(bbox.size y/2))*Y_SCALING))

bottom_right = (int((bbox.center.x+(bbox.size x/2))*X_SCALING)), \
(int((bbox.center.y+(bbox.size_y/2))*Y SCALING))

center = (int(bbox.center.x*X SCALING)),(int(bbox.center.y*Y SCALING))

# get average depth
RECT ROI DIST =15
#
if ( center[0)]<RECT_ROI DIST ):
center[0] = RECT_ROI_DIST
elif ( center[0][+RECT_ROI DIST > IMAGE WIDTH ):
center[0] = IMAGE_WIDTH-RECT ROI DIST
if ( center[1]J<RECT_ROI DIST ):
center[1] = RECT_ROI DIST
elif ( center[1][+RECT_ROI_DIST > IMAGE HEIGHT ):
center[1] = IMAGE HEIGHT - RECT ROI DIST
#
rect_roi_corners = [( center[0]-RECT_ROI_DIST, center[1]-RECT_ROI DIST),
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( center[0]+RECT_ROI DIST,
center[ | [+RECT _ROI DIST)]
rect_roi = depth_image[center[0]-RECT _ROI_DIST:center[0]+RECT_ROI_DIST, \
center[1]-
RECT _ROI DIST:center[1]+RECT _ROI _DIST]
try:
avg_depth = int(np.median(rect_roi))
except:
avg_depth = np.mean(rect_roi)

pass

avg_depth = depth_image[center[1],center[0]]

if DEBUG_MODE == 1:

#print('Object: "+str(i)+'": "+str(center[0])+',+str(center[1]))

# write depth of object on images
cv2.putText(cv_image, str((avg_depth)), center,
cv2.FONT _HERSHEY SIMPLEX, \
1.0, (255,255,255), lineType=cv2.LINE_AA)
cv2.putText(depth image, str((avg_depth)), center,
cv2.FONT HERSHEY SIMPLEX, \
1.0, (255,255,255), lineType=cv2.LINE_AA)

# put coords on image

#cv2.putText(cv_image, str(top_left), top_left,
cv2.FONT HERSHEY SIMPLEX, \

# 1.0, (255,255,255), lineType=cv2.LINE_AA)

#cv2.putText(cv_image, str(bottom_right), bottom_right,
cv2.FONT HERSHEY SIMPLEX, \

# 1.0, (255,255,255), lineType=cv2.LINE_AA)

#cv2.putText(cv_image, str(bbox), (100,100),
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c¢v2.FONT HERSHEY SIMPLEX, \
# 1.0, (255,255,255), lineType=cv2.LINE_AA)
#print(str(bbox))

# draw bboxes on images

cv2.rectangle(cv_image, top_left, bottom_right, (0,0,0), thickness=4)

cv2.rectangle(cv_image, rect roi_corners[0], rect roi_corners[1], (0,0,0),
thickness=4)

cv2.circle(cv_image, center, 2, (255,255,255), -4)

cv2.rectangle(depth_image, top_left, bottom_right, (0,0,0), thickness=4)

cv2.rectangle(depth_image, rect roi_corners[0], rect_roi_corners[1], (0,0,0),
thickness=4)

cv2.circle(depth_image, center, 2, (255,255,255), -4)

# draw line from center of image to center of bbox

image center = (IMAGE _WIDTH/2, IMAGE HEIGHT/2)

cv2.circle(cv_image, image center, 2, (255,255,255), -4)

#

cv2.line(cv_image, image center, center, (255,0,0), 3)

# center depth

center_depth = depth_image[image center[1],image center[0]]

cv2.putText(cv_image, str((center_depth)), image center,
cv2.FONT HERSHEY_ SIMPLEX, \

1.0, (255,255,255), lineType=cv2.LINE_AA)

signed height = center[1] - IMAGE HEIGHT/2

signed_width = center[0] - IMAGE_WIDTH/2

mid_height = (center[1]+(IMAGE_HEIGHT/2))/2

mid_width = (center[0]+H(IMAGE_WIDTH/2))/2

cv2.line(cv_image, (image center[0],center[1]), image center, (255,0,0), 3)

cv2.line(cv_image, (image center[0],center[1]), center, (255,0,0), 3)

#ev2.putText(cv_image, 'u="+str((signed height)), (mid_height,mid width),
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# cv2.FONT_HERSHEY_ SIMPLEX, 1.0, (255,255,255),
lineType=cv2.LINE AA)

#ev2.putText(cv_image, 'v="+str((signed width)), (mid_height,mid width),

# cv2.FONT HERSHEY SIMPLEX, 1.0, (255,255,255),
lineType=cv2.LINE_AA)

#if avg depth ==0:
#print('Object'+str(i)+'detected, but depth reads 0')

return avg_depth, center, cv_image

def object_predict(self, object data, header, image np,image):
image height,image width,channels = image.shape
obj=Detection2D()
obj_hypothesis= ObjectHypothesisWithPose()

object_id=object_data[0]
object_score=object data[1]

dimensions=object data[2]

obj.header=header

obj_hypothesis.id = object_id

obj_hypothesis.score = object_score

obj.results.append(obj_hypothesis)

obj.bbox.size_y = int((dimensions[2]-dimensions[0])*image height)
obj.bbox.size_x = int((dimensions[3]-dimensions[1] )*image width)
obj.bbox.center.x = int((dimensions[1] + dimensions [3])*image height/2)

obj.bbox.center.y = int((dimensions[0] + dimensions[2])*image width/2)

#print(str(obj.bbox))

119



Beijing Jiaotong University Graduation Design (Thesis)

Appendix
# print(‘height:'+str(image height))
# print(‘'width: '+str(image width))

return obj

def main(args):
rospy.init node('detector node')
obj=Detector()
try:
rospy.spin()
except KeyboardInterrupt:
print("ShutDown")
cv2.destroyAllWindows()
if name ==' main "

main(sys.argv)

Appendix D Movelt Control Program

#include <string>

#include <ros/ros.h>

#include <moveit/move_group_interface/move_group_interface.h>
#include <moveit/planning_scene_interface/planning_scene interface.h>
#include <moveit_msgs/DisplayRobotState.h>

#include <moveit msgs/DisplayTrajectory.h>

#include <moveit_msgs/AttachedCollisionObject.h>

#include <moveit_msgs/CollisionObject.h>

#include <vision_msgs/Objlnfo.h>

#include <tf/transform_listener.h>

#include <math.h>

struct Location

{
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float x;

float y;

float z;
I8
Location cupCam;
Location cupBase;
int sim=0;
void callback(const vision_msgs::ObjInfo::ConstPtr& revmsg)
{

cupCam.x=revmsg->x/1000;

cupCam.y=revmsg->y/1000;

cupCam.z=revmsg->z/1000;

// ROS_INFO("recv->0bj:%f,%f,%f" ,cupCam.x,cupCam.y,cupCam.z);

}

void transformPoint(const tf:: TransformListener& listener)

{

geometry msgs::PointStamped camPoint;

camPoint.header.frame id="camera link";
camPoint.point.x=cupCam.x;
camPoint.point.y=cupCam.y;
camPoint.point.z=cupCam.z;
try
{
geometry _msgs::PointStamped basePoint;
listener.transformPoint("base_link",camPoint,basePoint);
if(cupCam.x==0||cupCam.y==0||cupCam.z==0)
ROS_INFO("Please move leftCup in another position");
else
ROS_INFO("LeftCup->cam:%f,%f, %f-
->base: %f,%f,%f" ,camPoint.point.x,camPoint.point.y\
,camPoint.point.z,basePoint.point.x,basePoint.point.y,basePoint.point.z);
cupBase.x=basePoint.point.x;
cupBase.y=basePoint.point.y;

cupBase.z=basePoint.point.z;
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// ROS_INFO("Transformed location:%f,%f,%f" ,cupBase.x,cupBase.y,cupBase.z);

}

catch(tf:: TransformException& ex)

{
ROS_ERROR("Fail to find transformation!");

}

void robot_motion(moveit::planning_interface::MoveGrouplnterface& arm)
{
// start of pick
geometry msgs::Pose target pose;
double raw=180,pitch=0,yaw=0;//in degree
geometry _msgs::Quaternion q;
g=tf::createQuaternionMsgFromRollPitch Yaw(raw,pitch,yaw);
target pose.orientation.x = 0.71;
target pose.orientation.y = -0.55;
target pose.orientation.z = 0.41;
target_pose.orientation.w = -0.16;
// target _pose.orientation.x = 1;
// target_pose.orientation.y = 0;
// target_pose.orientation.z = 0;

// target _pose.orientation.w = 0;

target pose.position.x = cupBase.x-0.2;
target pose.position.y = cupBase.y;
target pose.position.z = cupBase.z+0.2;

ROS_INFO("Picked obj location:%f,%f,%f",cupBase.x,cupBase.y,cupBase.z);

if(cupCam.x!=0&&cupCam.y!=0&&cupBase.z>=0.8)
{

ROS_INFO("Ready to plan pick.");
arm.setStartStateToCurrentState();

arm.setPoseTarget(target pose);
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moveit::planning_interface::MoveGrouplnterface::Plan plan plan_pick;

moveit::planning_interface::MoveltErrorCode success = arm.plan(plan_pick);

ROS _INFO("Plan (pose goal) %s",success?"": "FAILED");

if(success)
{
arm.execute(plan_pick);
sleep(1);
ROS_INFO("left waypoints calculated,please run rRightMotion");

ros::shutdown();

I}

// robot_state::RobotState start_state lift(*arm.getCurrentState());

// const robot_state::JointModel Group *joint_model group
start_state_lift.getJointModelGroup(arm.getName());

// start_state lift.setFromIK(joint_model group,target pose);

// float GoalZ;

/I GoalZ=cupBase.z+0.2;

// //directly set waypoints of movel

// std::vector<geometry msgs::Pose> waypoints;

// waypoints.push_back(target pose);

// for(;GoalZ>=cupBase.z;GoalZ-=0.02)

114

// target_pose.position.z=GoalZ,;

// waypoints.push_back(target pose);

I}

// moveit_msgs::RobotTrajectory trajectory;

// const double jump_threshold = 0.0;

// const double eef step =0.01;

// double fraction = 0.0;
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// int maxtries = 100; // maximum number of planning attempts
// int attempts = 0; / number of planning attempts
// while(fraction < 1.0 && attempts < maxtries)
114
// fraction = arm.computeCartesianPath(waypoints, eef step, jump_threshold, trajectory);
// attempts++;
// //if(attempts % 10 == 0)
/I 1/ ROS_INFO("Still trying after %d attempts..." , attempts);
/1'}

// if(fraction == 1)
114
// ROS_INFO("Path computed successfully. Moving the [Arm.");

/' I/ Generate motion planning data for the robot arm

// arm.setStartState(start_state lift);

// arm.setPoseTarget(target pose);

// moveit::planing_interface::MoveGrouplnterface::Plan plan_movel;
// plan_movel.trajectory = trajectory;

/' // Execute the campaign

// arm.execute(plan_movel);

// ros::shutdown();

// sleep(1);

I}

// else

114

// ROS_INFO("Path planning failed with only %0.6f success after %d attempts.", fraction,

maxtries);

/Iy
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void addCollisionObjects(moveit::planning_interface::PlanningScenelnterface&
planning_scene _interface)
{
// BEGIN_SUB_TUTORIAL tablel
/!
// Creating Environment
/] MAAAAAAAAAAAAAAAAA
// Create vector to hold 3 collision objects.
std::vector<moveit_msgs::CollisionObject> collision_objects;

collision_objects.resize(3);

// Add the first table where the cube will originally be kept.
collision_objects[0].id = "table top";

collision_objects[0].header.frame_id = "base_link";

/* Define the primitive and its dimensions. */
collision_objects[0].primitives.resize(1);

collision_objects[0].primitives[0].type = collision_objects[0].primitives[0].BOX;
collision_objects[0].primitives[0].dimensions.resize(3);

]
] [
] [
collision_objects[0].primitives[0].dimensions[0] = 1.4;//0.74 intotal
collision_objects[0].primitives[0].dimensions[1] = 1.1;

] [

collision_objects[0].primitives[0].dimensions[2] = 0.001;
/* Define the pose of the table. */
collision_objects[0].primitive_poses.resize(1);
collision_objects[0].primitive_poses[0].position.x = 0;
collision_objects[0].primitive_poses[0].position.y = 0.7;
collision_objects[0].primitive_poses[0].position.z = 0.83;
// END_SUB_TUTORIAL

collision_objects[0].operation = collision_objects[0]. ADD;

planning scene _interface.applyCollisionObjects(collision_objects);
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int main(int argc, char **argv)
{
ros::init(argc, argv, "LarmMotion");
ros::NodeHandle n;
ros::Subscriber sub=n.subscribe("LeftObjects",10,callback);
tf:: TransformListener listener(ros::Duration(1));
ros:: Timer

timer=n.create Timer(ros::Duration(1),boost::bind(&transformPoint,boost::ref(listener)));

while(ros::0k)
{
ros::spinOnce();
ros::AsyncSpinner spinner(1);

spinner.start();

moveit::planning_interface::MoveGrouplnterface arm("left_manipulator");
//Get the name of the terminal link

std::string end_effector link = arm.getEndEffectorLink();

/1 Set the reference coordinate system to be used for the target position
std::string reference frame = "base link";

arm.setPoseReferenceFrame(reference frame);

// Allow re-planning when motion planning fails

arm.allowReplanning(true);
//Setting the allowable error of position (in meters) and attitude (in radians)

arm.setGoalPositionTolerance(0.001);

arm.setGoalOrientationTolerance(0.01);
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//Setting the maximum speed and acceleration allowed
arm.setMaxAccelerationScalingFactor(0.2);

arm.setMax VelocityScalingFactor(0.2);
//add object

// Define a pose for the box (specified relative to frame id)
// Define a collision object ROS message.
moveit::planning_interface::PlanningScenelnterface planning_scene_interface;

addCollisionObjects(planning_scene_interface);

robot_motion(arm);

return 0;

Appendix E Action Client Program

#include <ros/ros.h>

#include <actionlib/server/simple_action_server.h>
#include <control msgs/FollowJointTrajectoryAction.h>
#include <trajectory msgs/JointTrajectory.h>

//header for socket

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include <unistd.h>
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#include <string.h>
#include <stdlib.h>
#include <fentl.h>
#include <sys/shm.h>
#include <vision_msgs/Objlnfo.h>
#include <tf/transform_listener.h>
#define PI 3.1415
#define PORT 7000
#define BUFFER_SIZE 1024
char endbuf[600];
char sendbuf[55];
char recvbuf[ BUFFER SIZE];
char tmp_cmd[BUFFER_SIZE];
int sock_cli = socket(AF_INET, SOCK_STREAM, 0);
using namespace std;
struct Location
{
float x;
float y;
float z;
I8
Location cupCam;
Location cupBase,lcupBase;
struct Pose
{
float x;
float y;
float z;
float rx;
float ry;
float rz;
I8
Pose leftCup;

//socket client ,action server
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class JointTrajectoryActionServer
{
public:
JointTrajectoryActionServer(std::string name):
as_(nh_, name, false), action_name (name)
{
// register callback for goal
as_.registerGoalCallback(boost::bind(&JointTrajectoryActionServer::goalCallback, this));

as_.start();

}

~JointTrajectoryActionServer(void){}

// when a trajectory command comes, this function will be called.
void goalCallback()

{

boost::shared ptr<const control msgs::FollowJointTrajectoryGoal> goal,;
goal=as_.acceptNewGoal();

int point_size=goal->trajectory.points.size();

cout<<"trajectory point size:"<< goal->trajectory.points.size()<<endl;
int num=0;

int joint_num=0;

float wayPoints;

int counter=0;

int wayPointsNum=0;

wayPointsNum=goal->trajectory.points.size();

//store wayPoints

float PointStor[goal->trajectory.points.size()][7];

for(;num<goal->trajectory.points.size()- 1 ;num=num-+>5)
{
if(num==0)
{
strepy(sendbuf,"/RP/ ");
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send(sock cli,sendbuf,sizeof(sendbuf),0);
cout<<sendbuf<<endl;
}
float GoalDeg[7]={ goal->trajectory.points[num].positions[0]*(180/PI),
-goal->trajectory.points[num].positions[ 1]*(180/PI),
goal->trajectory.points[num].positions[2]*(180/PI),
goal->trajectory.points[num].positions[3]*(180/PI)+90,
-goal->trajectory.points[num].positions[4]*(180/PI),
-goal->trajectory.points[num].positions[5]*(180/PI),

goal->trajectory.points[num].positions[6]*(180/PI)};

// cout<<"point_number"<<num+1< ":[" << (GoalDeg[0])
/] <<"" << (GoalDeg[0])
/] << """ << (GoalDeg[1])
/] << """ << (GoalDeg[2])
/] << """ << (GoalDeg[3])
/] << """ << (GoalDeg[4])
/<< " << (GoalDeg[5])
/<< """ << (GoalDeg[6])

[/ <<"]"<<endl;

int i;
for(i=0;i<7;i++)
{
PointStor[num][i]=GoalDeg[i];
h
//debug information
sprintf(sendbuf, "movej([%.0f,%.01,%.0f,%.0f,%.0f,%.0f,%.0£,%.0£],30,2000,-1); ",
GoalDeg[0],
GoalDeg [1],
GoalDeg [2],
GoalDeg [3],
GoalDeg [4],
GoalDeg [5],
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GoalDeg [6]);
//send the cmd to the robot
send(sock_cli,sendbuf;,sizeof(sendbuf),0);

cout<<sendbuf<<endl;

float endGoal[ 7]={goal->trajectory.points[point_size-1].positions[0]*(180/PI),
-goal->trajectory.points[points_size-
1].positions[1]*(180/PI),
goal->trajectory.points[point_size-1].positions[2]*(180/PI),
goal->trajectory.points[point_size-
1].positions[3]*(180/PI)+90,
-goal->trajectory.points[point_size-1].positions[4]*(180/PI),
-goal->trajectory.points[point_size-1].positions[5]*(180/PI),

goal->trajectory.points[point_size-1].positions[6]*(180/PI)};

// if (wayPointsNum%.2==0)
/14

'}
sprintf(endbuf, "movej([%.01,%.0f,%.01,%.01,%.01,%.0f,%.01,%.0£,%.0£],30,2000, -
1);movej_pose([%.0f,%.0f,%.0£,90,40,-95],40,20,-1);movej_pose( [%.0f£,%.0f,%.0f,%.0£,90,40,-
95],40,20,-1);sleep(6);<end>",
endGoal[0],
endGoal[1],
endGoal [2],
endGoal [3],
endGoal [4],
endGoal [5],
endGoal [6],
cupBase.x*1000+400,//1
cupBase.y*1000-20,
cupBase.z*1000+250,
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cupBase.x*1000+270,//2
cupBase.y*1000-30,
cupBase.z*1000+10);
//send the cmd to the robot
send(sock_cli,endbuf;sizeof(endbuf),0);

cout<<endbuf<<endl;

/**sprintf(sendbuf, "movel([%f,%f,%f,%f,%f,%f,%f,%f],30,2000,-
1);movep([%f,%f,%f,%f,%f,%{+90,%7],30,2000,-1);\
movep([%f,%f,%f,%f, %f, %t,%1],30,2000,-
1);",rightCup.x,rightCup.y,rightCup.z,right Cup.rx\
rightCup.ry,rightCup.rz,rightCup.x,rightCup.y,rightCup.z,right Cup.rx\
rightCup.ry,rightCup.rz,rightCup.x,rightCup.y,rightCup.z,rightCup.rx\
JrightCup.ry,rightCup.rz); **/
//send(sock_cli,sendbuf,sizeof(sendbuf),0);
// tell motion control hardware to execute
// do something
// when finished, return result
as_.setSucceeded(result );
H
protected:
ros::NodeHandle nh_;
actionlib::SimpleActionServer<control msgs::FollowJointTrajectoryAction> as_;
actionlib::SimpleActionServer<control msgs::FollowJointTrajectoryAction>::Result result_;
std::string action_name_;

)5

void init_socket()

{
//define sockfd

//define sockaddr_in
struct sockaddr_in servaddr;

servaddr.sin_family = AF_INET;
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servaddr.sin_port = htons(PORT); //server port
servaddr.sin_addr.s_addr = inet_addr("127.0.0.1"); //use local addr to test
if(connect(sock_cli, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0)
{

perror("connect");

exit(1);

void callback(const vision_msgs::ObjInfo::ConstPtr& revmsg)
{
cupBase.x=revmsg->X;
cupBase.y=revmsg->y;
cupBase.z=revmsg->z;
¥
void Icallback(const vision_msgs::Objlnfo::ConstPtr& revmsg)
{
lcupBase.x=revmsg->x;
lcupBase.y=revmsg->y;
IcupBase.z=revmsg->z;
¥
int main(int argc, char®** argv)
{
ros::init(argc,argv, "Rserver");

ros::NodeHandle n;

init_socket();

//JointTrajectoryActionServer srv("left_ manipulator controller/follow joint trajectory");
JointTrajectoryActionServer srv("right manipulator _controller/follow_joint trajectory");
ros::Subscriber rsub=n.subscribe("RightObjBase",10,callback);

ros::Subscriber Isub=n.subscribe("LeftObjBase",10,lcallback);

ros::spin();

return 0;

}
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